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1 Introduction

This document corresponds to the delivery WP3-D1 “Forecasting Models for Power Prediction’” of
the SMART electric Buses (SMARTeBuses) project, funded by the Sustainable Energy Authority of
Ireland (SEAI) RD&D Programme. This project is classified as Non-economic public Good Research
under the European Union (EU) State Aid regulations and will exploit, combine and improve cutting-
edge Artificial Intelligence (AI) technologies to develop and implement optimization models for the
operation of electric buses in Ireland with operational constraints.
In this deliverable, we describe a set of models for time series analysis and forecasting based on
historical data. In particular, we focus our attention in statistical and deep learning models to estimate
the production and demand of energy in Ireland. We recall that in this project we plan to use AI to
maximize the use of renewable energies in the transportation sector, e.g., infrastructure and charging
events of the electric fleet.
Figures 1.1 and 1.2 show the time series plot of the demand and clean energy production in Ireland
(at 15-minute intervals) for February 2020. In these figures we observe two different patterns, Fig-
ure 1.1 shows a clear daily seasonal pattern where the energy demand peaks between 18:00 and 20:00
hours (with approx. 5000 MW) and the lowest demand levels are typically after midnight. On the
other hand, Figure 1.2 shows a higher variability due to the wind power is intermittent and it is only
available when the wind flows at certain speeds, the system reached a minimum of 87MW on Feb.
12th at 21:00 and for the same time period wind farms in Ireland produced as much as 3337 WM on
Feb. 22nd at 18:45.

Figure 1.1: Energy Demand in Ireland - Feb 2020

In this deliverable we aim at studying state-of-the-art models that given a sequence of values (or power
measurements), Z={Z1, Z2, . . . , Zn}, estimate the next k values in the sequence, i.e., Zn+1, Zn+2, ...,
Zn+k. The simplest method to estimate the next element in sequence is to assume that future values are
equal to the most recent observation, i.e., Zn+1 = Zn. Another simple method consists in predicting
the next element as the average of a pre-defined period of time, e.g., an hour or a day. Interestingly,
this simple moving average method represents the foundations of the popular Moving Average (MA)
method based on statistical properties of the dataset. In this project. we will study the performance
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1. Introduction

Figure 1.2: Wind Power Production in Ireland - Feb 2020

of the Autoregressive Integrated Moving Average (ARIMA) and Seasonal Autoregresssive Integrated
Moving Average (SARIMA) statistical models for energy forecasting.
Alternatively, deep learning models can be employed for time series forecasting. These models are
based on Artificial Neural Networks (ANN) with a set of interconnected nodes simulating a human
brain. The network includes an input layer representing the time series data for a pre-predefined time
window; an output layer with the predictions; and hidden layers. The number and structure of the
hidden layers represents the architecture of the network. In this project, we study the performance of
the Long-Short Term Memory (LSTM) architecture for the energy forecasting.
This deliverable is structured as follows. Chapter 2 describes main components of the ARIMA and
SARIMA models, i.e., Autoregression (AR), MA and the integration of both via the differencing
method. Chapter 3 describes the LSTM architecture designed to overcame the limitations of the
Recurrent Neural Network (RNN) one. And finally, Chapter 4 provides general conclusions.

Deliverable WP3-D1
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2 ARIMA and SARIMA

ARIMA is a well-known statistical method for time series analysis. ARIMA learns patterns from
historical data and predicts subsequent values [1]. In this context, ARIMA is capable of producing
models for stationary and non-stationary data, e.g., the mean increases (or decreases) with time. Non-
stationary data can be transformed into stationary by using the difference between two (or more)
subsequent values. Examples of non-stationary data include: finance data [2], biomedical signal
processing [3], and audio signal processing [4].

2.1 Random Walk

A random walk time series assumes that the next value in the sequence is a random variation from
the previous observed value, i.e., Zt = Zt−1 + εt, where Zt denotes the value of the time series at time
t, Zt−1 denotes the previous data value in the time series, and εt denotes the error between the two
time steps. This model assumes that the random variations are independent and identically distributed
(i.i.d).

2.2 Autoregressive Model

The AR component of ARIMA estimates the next value in the time series as a linear combination of
the previous values with the shock value (or noise) and a constant value as follows:

Zt = c+

p∑
i=1

φiZt−i + εt

where p denotes the order of the model, Zt−i denotes the past values, εt denotes a error at time t, φi

are parameters of the model, and c is a constant. parameters.

2.3 Moving Average

The MA component in ARIMA estimates the next value of the time series as a linear combination of
the previous values as follows:

Zt = µ+

q∑
i=1

θiεt−i

where q denotes the order of the model, µ denotes the mean of the dataset, θ denotes the parameters
of the model, and ε denotes the error at the different time steps. [5] describes a process to calculate
the values of the parameters.
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2. ARIMA and SARIMA 2.4. Non-Stationary Data

2.4 Non-Stationary Data

A time series is stationary when the mean, variance, and autocovariance remains unchanged or con-
stant over time. Figure 2.1 shows an example of a non-stationary behaviour for the popular Air
Passengers dataset available in Kaggle.1 The dataset describes the number of monthly passengers of
a US airlines from 1948 to 1960 and this particular patter is commonly known as trend in time series
and indicates that the dataset exhibits an increasing (or decreasing) patter changing over time.
The Integrated (I) component of ARIMA uses differencing in order to achieve stationary in the dataset,
and therefore, it helps to remove the time dependency by subtracting the previous observation, i.e.,
Z ′i = Zi − Zi−1 or first degree of differencing. In the general form ARIMA incorporates the degree
of differencing d as the number of recursive applications of the first order differences. . For instance,
the following formulation represents the differencing method with d=2 or Z ′′t .

Z ′′t = Z ′t − Z ′t−1
= (Zt − Zt−1)

′ − (Zt−1 − Zt−2)
= Zt − 2Zt−1 + Zt−2

The first degree typically allows de-trending for datasets with linear trends and the second degree
allows quadratic trends. In the general form ARIMA incorporates the degree d as the number of
recursive applications of the first order differences.
Seasonality also affect the stationary pattern of the time series and seasonal differencing represents
the difference between the current value and the corresponding value in previous period, e.g., for
monthly data with 12 periods the difference time will be Z ′t = Zi − Zt−m with m = 12. The second
degree d of seasonal differencing can be expressed as:

Z ′′t = Z ′t − Z ′t−m
= (Zt − Zt−m)′ − (Zt−m − Zt−1−m)
= Zt − 2Zt−m + Zt−1−m

1This database is available at https://www.kaggle.com/rakannimer/air-passengers

Deliverable WP3-D1
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2.5. ARIMA 2. ARIMA and SARIMA

Figure 2.1: Air Passengers Time series - Non-Stationary Data.

Figure 2.2: Air Passengers Time series After Applying Differencing d = 12.

2.5 ARIMA

The two previously mentioned components (AR(p) and MA(q)) form a Mixed Autoregressive-Moving
Average (ARMA) Model when combined together for non-seasonal time series. In this context, the
ARMA model can be expressed as:

Zt = c+ εt +

p∑
i=1

φiZt−i +

q∑
i=1

θiεt−i

These models afford more flexibility when fitting to time series data. It is also commonly found that
models which contain autoregressive and/or moving average aspects perform best when both the p
and q values are set to two or lower. The Integrated aspect of ARIMA models comes from integrating
the stationary ARMA process as thus the full mathematical model for ARIMA can be formulated as:

8
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2. ARIMA and SARIMA 2.6. Seasonal ARIMA

Z ′t = c+ εt +

p∑
i=1

φiZ
′
t−i +

q∑
i=1

θiεt−i

where Z ′t denotes degree (d) of first order differences.

2.6 Seasonal ARIMA

SARIMA takes the concepts defined in ARIMA and extends them using some seasonality compo-
nents. In the same vein as ARIMA, SARIMA uses variables for autoregressive order, moving average
order, and integration (P , Q, and D respectively). These variables are used in addition to the ones
outlined before for ARIMA.
SARIMA introduces another variable s which which controls the interval at which similar data trends
are observed at. For instance, in an hour data-set if similar trends are observed every 24 hours, a s
value of 24 should be used.
SARIMA(1,0,1) × (1,0,1) with m=12 can formulated as follows:

Zt = ΦZt−12 + εt + Θt−12

as it can be observed SARIMA calculates the next value in the series similar to ARIMA with lagged
values.

Deliverable WP3-D1
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3 Long Short Term Memory

Deep learning is an emerging area in the field of AI with multiple applications in a variety of field such
as: natural language processing [6], cyber security [7], fraud detection [8], and speech recognition [9].
In this deliverable, we focus in LSTM, a state-of-the-art deep learning architecture, with outstanding
results for energy forecasting [10].

3.1 RNN Architecture

The RNN architecture is a popular deep learning technology to process time dependent data. Fig-
ure 3.1 depicts the core components of the architecture with three consecutive memory cells that
represent the internal memory of the network capable of remembering previous values of the se-
quence. As it can be observed the each memory unit takes two input parameters, i.e., current value in
the sequence (e.g., Xt) and the output of the previous value memory unit (St−1) and the last memory
outputs the prediction.

Figure 3.1: RNN architecture.

[11] highlighted that traditional RNNs face a problem with noticing patterns in long term data, in fact
only recent data is represented. This means that RNNs are considered to have Short Term memory.
As a result traditional RNNs struggle with domains such as music generation and time series pattern
recognition, this can lead to back propagation error when building the system. LSTM is a type of
RNN introduced by [12], which makes use of constant error flow using constant error carrousels and
a gradient-based algorithm.

3.2 LSTM Architecture

In the same vein as RNN, LSTM also organises the network in succesive memory cells to process
sequential data. However, unlike the RNN network that requires two input and one output value, the
LSTM architecture takes two input and two output values.
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3. Long Short Term Memory 3.2. LSTM Architecture

Unlike the RNN architecture that takes two input and one output value, the LSTM architecture takes
two input and two output values. The additional output value the memory cells, i.e., Ct, denotes the
value of the memory unit and regulates the memory function of the network.

Figure 3.2: LSTM memory cell

Figure 3.2 depicts the structure of the memory cell in the LSTM network. The cell contains three
gates, i.e., input, update, and output gates. Each of these gates consists of a Sigmoid activation
function and a multiplication operation. Figure 3.3 depicts the behaviour of the Sigmoid function, as
it can be observed the output value ranges between 0 and 1 and therefore it scales down the value of
the cell state, e.g., if the output of the first gate is 0.5 then all the values in the cell state are halved.
The input gates is responsible for determining what information is discarded from the previous iter-
ation. This is done by passing the value of the previous sequence and the current sequence though a
Sigmoid action function, this is the value then used for the element wise multiplication. The mathe-
matical model for this is:

ft = Sigmoid(Wt ∗ [St−1, Xt] + bt (3.1)
C‘t−1 = ft ∗ Ct−1 (3.2)

where ft represents the output of the Sigmoid activation function; C‘t1: is the output of the input gate;
Wf : is the weights for Sigmoid neuron f ; and bf : is the bias for Sigmoid neuron f .

Deliverable WP3-D1
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3.2. LSTM Architecture 3. Long Short Term Memory

Figure 3.3: Sigmoid Function

Figure 3.4: Tanh Function.

The update gate decides whether to remember or modify its previous value. This gate uses hyperbolic
tangent (Tanh) and Sigmoid activation function. Figure 3.4 displays the behaviour of the Tanh func-
tion, the value of this function ranges between -1 and 1 and allows increases and decreases of values
in the cell. The Sigmoid function modifies the output of the Tanh function with the use of the element
wise multiplication. The resulting value in the cell state is then passed out of the current layer of
LSTM as the current cell state value Ct and onto the next memory cell. This can be expressed as:

12
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3. Long Short Term Memory 3.2. LSTM Architecture

gt = Sigmoid(Wg ∗ [St−1, Xt] + bg) (3.3)
ut = Tanh(Wu ∗ [St−1, Xt] + bu) (3.4)

ut = (ut ∗ gt) (3.5)
Ct = Ct−1 + ut (3.6)

The output gate decides the prediction value for the next time step. This is done by performing an
element wise multiplication with the output of the update gate which has been passed through an
Tanh activation function, and a Sigmoid activation function using St−1 and Xt as inputs. This can be
formally written as:

ht = Tanh(Wh ∗ Ct + bh) (3.7)
kt = Sigmoid(Wk ∗ [St−1, Xt] + bk) (3.8)

St = (ht ∗ kt) (3.9)

Deliverable WP3-D1
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4 Conclusions

In this deliverable we have describe a set of state-of-the-art methods for time series analysis and pre-
diction. In particular, we focussed our attention in two statistical models, i.e., ARIMA and SARIMA
and the LSTM deep learning architecture. We plan to evaluate these models in WP3-D2 “Valida-
tion of the wind power prediction models”. Our current preliminary evaluation indicates that our
results are consistent with predictions available in the Smart Grid Dashboard system available at
http://smartgriddashboard.eirgrid.com/.
We plan to use this models mainly in WP5 Robust Scheduling of Charging Events to identify suitable
charging times for the electric bus fleet while maximising the use of renewable energies.
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