
SEAI RD&D 2019

Big Data Analytics With Fast and Scalable
Access to Historical Data

Milestone number: WP2-M1

This Project has received funding from the SEAI RD&D Programme.
Grand Award Number: 19/RDD/519

Project Acronym: SMARTeBuses
Project Full Title: SMART electric Buses
Grant Number: 19/RDD/519
Project URL: https://smartebuses.github.io/web/

Deliverable type: Milestone / Report
Dissemination level: Private
Delivery Date: October 31st, 2020
Number of pages: 17
Keywords: SMARTeBuses, Artificial Intelligence, Big Data
Authors: Dr. Alejandro Arbelaez - University College Cork

Dr. Ignacio Castiñeiras - Cork Institute of Technology
Peer review: Padraigh Jarvis - University College Cork

https://smartebuses.github.io/web/

Contents

1 Introduction 4

2 Big Data & Public Transportation 5
2.1 Number of observations in the dataset . 5
2.2 Buses arriving ahead or behind schedule . 6
2.3 List of buses scheduled for each day of the week . 7
2.4 Average waiting times . 8

3 Big Data & Wind Power 10
3.1 Monthly Average . 10
3.2 Daily Average . 12
3.3 Hourly Average . 13

4 Conclusions 15

1

List of Figures

2.1 Daily waiting time for each month of the year - Stop: 240491 9

3.1 Monthly Energy (2020) . 11
3.2 Daily Moving Average (2020) . 13
3.3 Hourly Average . 14

List of Tables

2.1 Number of buses ahead and behind the schedule . 7

List of Algorithms

2.1 Observations per station . 6
2.2 Processing Raw Data . 6
2.3 Total Buses Behind and Ahead Schedule . 6
2.4 Scheduled buses per day of the week . 7
2.5 Average Waiting Times week . 9

3.1 Loading Wind Data . 10
3.2 Monthly Average . 11
3.3 Daily Moving Average . 12
3.4 Daily Moving Average . 13

2

List of Acronyms

SEAI Sustainable Energy Authority of Ireland
SMARTeBuses SMART electric Buses
EU European Union
AI Artificial Intelligence
HDFS Hadoop Distributed File System
RDD Resilient Distributed Datasets
API Application Programming Interface

3

1 Introduction

This document corresponds to the milestone report WP2-M1 “Big Data Analytics With Fast and
Scalable Access to Historical Data” of the SMART electric Buses (SMARTeBuses) Project, funded
by the Sustainable Energy Authority of Ireland (SEAI) RD&D programme. This project is classified
as Non-economic public Good Research under the European Union (EU) State Aid regulations and
will exploit, combine and improve cutting-edge Artificial Intelligence (AI) technologies to develop
and implement optimization models for the operation of electric buses in Ireland with operational
constraints.
In this milestone, we focus our attention in the use of Spark to analyse historical data from two
sources: (i) the transportation sector (i.e., 208 bus route in Cork city) and (ii) the energy production
in the Ireland (including wind energy). We recall that this information will play an important role for
future work packages, e.g., to identify suitable locations for fast charging stations, the scheduling of
charging/discharging events for the electric fleet, and forecasting the production of wind energy in
Ireland.
We recall that while historic information on the location of the buses of the 208 route in Cork is
not available online, real-time information can be obtained through the TFI Real Time Ireland App
available at https://www.transportforireland.ie/available-apps. Therefore, in this report, we use Big
Data technologies to analyse data from mid June 2016 to late September 2017. The dataset was
created by querying the Application Programming Interface (API) every three minutes from 6:30AM
to midnight and gathering all entries of a day into a file.1 Likewise we use a public data available at
[1] for our energy production case study.
As indicated in [2], the SMARTeBuses project uses a set of Big Data storage and analysis tools,
including Hadoop Distributed File System (HDFS), Hadoop MapReduce and Spark. In this mile-
stone, we focus in two Spark libraries for our big data analysis, i.e., Spark Core and Spark SQL.
Whereas Spark Core uses Resilient Distributed Datasets (RDD) as its main data abstraction, Spark
SQL uses DataFrames. Taking this into account, Chapter 2 presents our Big Data analysis for the
public transportation dataset using Spark Core and Chapter 3 presents our Big Data analysis for the
energy production dataset using Spark SQL.

1We would like thank Michael O’Keefe and the Insight Center for Data Analytics for sharing this dataset.

4

2 Big Data & Public Transportation

The transportation sector generates large quantities of data with real-time updates of the service. [3, 4]
outlines the importance of Big Data to store and process the increasingly available data, such as: time-
stamped and geo-tagged location of the buses, i.e., latitude and longitude coordinates of the buses.
In the SMARTeBuses project, we focus our attention in the Irish transportation system and for this
milestone we use the 208 bus route in Cork city for our case study.
In this chapter, we provide a set of algorithms implemented in Spark Core (using the PySpark library
with RDD) to compute general statistics about the 208 bus route in Cork city from mid June 2016 to
late September 2017. The RDD main data abstraction of Spark Core handles distributed objects with
multiple features, including but not limited to: lazy evaluation, fault-tolerance, and in-memory RAM
computation.
In our 208 route dataset, each observation or datapoint has the following structure:

• Station id
• Direction
• Day of the week
• Timestamp of the query
• Scheduled arrival time
• Expected arrival time

Furthermore, in this milestone we use the following stations for our this case study:

• Station 240101 (UCC WGB - Lotabeg)
• Station 240561 (UCC WGB - Curraheen)
• Station 241111 (CIT Technology Park - Lotabeg)
• Station 240491 (Patrick Street - Curraheen)

The dataset provides regular updates of the arrival time of the buses to each (selected) station and
we focus in the following time intervals: Morning from 7:00 AM to 10:00 AM and Evening from
4:00PM to 7:00PM.

2.1 Number of observations in the dataset

In this section, we start our analysis with a basic query that list the number of observations per query.
We would like to recall that even thought the goal of the bus operators if to provide full digital map
of the service, only a fraction of the buses currently allow a real-time tracking of the system.
Algorithm 2.1 describes the simplest analysis of the dataset, calculating the number of observations
in the system. In Line 2 the SparkContext (i.e., sc) loads the dataset from the HDFS and scans each
observation; line 3 counts the number of observations; and line 4 displays the final result.

5

2.2. Buses arriving ahead or behind schedule 2. Big Data & Public Transportation

Algorithm 2.1: Observations per station
1 def o b s e r v a t i o n s p e r s t a t i o n (sc , m y d a t a s e t d i r) :
2 inputRDD = sc . t e x t F i l e (m y d a t a s e t d i r) # Loading t h e d a t a s e t
3 resVAL = inputRDD . c o u n t () # Coun t ing
4 p r i n t (resVAL) # D i s p l a y i n g t h e r e s u l t s

2.2 Buses arriving ahead or behind schedule

One of the main goals of the SMARTeBuses is to identify suitable locations for fast charging stations.
In this context, WP-3 will develop optimization algorithms to minimize the number of charging units
while satisfying the demand and maximizing the use of renewable energies. In this context, we aim
at synchronising the charging and discharging times with the current working schedule of the buses.

Algorithm 2.2 describes the general steps to process observations from the raw data and facilitate
subsequent operations. In particular, we remove observations with inconsistent or missing data.

Algorithm 2.2: Processing Raw Data
1 def p r o c e s s l i n e (l i n e) :
2 r e s = ()
3 l i n e = l i n e . r e p l a c e (”\n ” , ” ”)
4 params = l i n e . s p l i t (” ; ”) # I n p u t s t r u c t u r e pre−p r o c e s s i n g
5 i f (l e n (params) = = 8) :
6 r e s =(i n t (params [0]) , s t r (params [1]) , s t r (params [2]) ,
7 s t r (params [3]) , s t r (params [4]) , s t r (params [5]) ,
8 s t r (params [6]) , s t r (params [7]))
9 re turn r e s

Algorithm 2.3: Total Buses Behind and Ahead Schedule
1 def a h e a d o r b e h i n d s c h e d u l e (sc , m y d a t a s e t d i r , s t n u m b e r) :
2 inputRDD = sc . t e x t F i l e (m y d a t a s e t d i r) # Loading t h e d a t a s e t
3 linesRDD = inputRDD . map (p r o c e s s l i n e) # P r o c e s s i n g l i n e s
4 s ta t ionRDD = linesRDD . f i l t e r (

lambda l i n e : l i n e [0] == s t n u m b e r) # R e l e v a n t s t a t i o n s
5 infoRDD = sta t ionRDD . map (

lambda l i n e : (l i n e [6] , l i n e [7])) # R e l e v a n t d a t a
6 on timeRDD = infoRDD . map (

lambda l i n e : (1 i f l i n e [0] >= l i n e [1] e l s e 0 ,
1 i f l i n e [0] < l i n e [1] e l s e 0)) # Buses ahead and b eh ind

7 resVAL = on timeRDD . reduce (lambda x , y :
(x [0] + y [0] , x [1] + y [1])) # Pos t−p r o c e s s i n g

8 p r i n t (resVAL) # D i s p l a y i n g t h e s o l u t i o n

Algorithm 2.3 outlines the Spark implementation to identify the number the number of buses ahead
or behind original time in a given station (i.e., st number). In this algorithm line 2 loads the dataset
from the HDFS. Line 3 transforms the observations from the raw dataset into a new RDD by applying
the function process line (see Algorithm 2.2). Line 4 filters out irrelevant stations. Lines 5-6 select
relevant data for this particular query, i.e., scheduled and expected arrival time, to calculate the number
of buses ahead or behind the schedule. Finally, line 7 aggregates the partial results to compute the
final numbers.

6
Deliverable WP2-M1

2. Big Data & Public Transportation 2.3. List of buses scheduled for each day of the week

Table 2.1 shows the number of buses ahead and behind the original schedule. As it can be observed
Stop 240491 reports the largest number of buses behind the schedule and 20561 reports the largest
number of buses ahead the original schedule.

Stop Behind Ahead
240491 10122 6293
240171 5465 7177
240101 5337 10415
240561 4987 11427
240001 3840 9276
241111 5698 7033

Table 2.1: Number of buses ahead and behind the schedule

2.3 List of buses scheduled for each day of the week

In addition to identifying potential charging/discharging events for the buses we also need to identify
a mapping between the buses and the stops for each day of the week. Algorithm 2.4 outlines the
process to calculate the number of buses scheduled to use a given station for each day of the week.
Similarly to the previous algorithm, Lines 2 to 5 loads the dataset, identify the relevant stations and
the relevant data. Line 6 identifies the buses using the station. Lines 7 and 8 aggregates the data by
weekly and days of the week.

Algorithm 2.4: Scheduled buses per day of the week
1 def b u s e s p e r d a y (sc , m y d a t a s e t d i r , s t a t i o n n u m b e r) :
2 inputRDD = sc . t e x t F i l e (m y d a t a s e t d i r) # Loading t h e d a t a s e t
3 linesRDD = inputRDD . map (p r o c e s s l i n e) # Pre−p r o c e s s i n g
4 s ta t ionRDD = linesRDD . f i l t e r (

lambda l i n e : l i n e [0] == s t a t i o n n u m b e r) # S e l e c t i n g t h e s t .
5 infoRDD = sta t ionRDD . map (

lambda l i n e : (l i n e [3] + ” ” + l i n e [6])) # S e l e c t i n g r e l e v a n t d a t a
6 repeatedRDD = infoRDD . d i s t i n c t () # D i f f e r e n t b u s e s
7 keyRDD = repeatedRDD . map (lambda l i n e :

(l i n e . s p l i t (” ”) [0] , l i n e . s p l i t (” ”) [1]))
8 groupRDD = keyRDD . groupByKey () # A g g r e g a t i n g d a i l y d a t a
9 solut ionRDD = groupRDD . mapValues (m y s o r t) # S o r t i n g t h e r e s u l t

10 resVAL = solut ionRDD . c o l l e c t () # C o l l e c t i n g t h e r e s u l t s
11 f o r i t em in resVAL :
12 p r i n t (i t em) # D i s p l a y i n g t h e r e s u l t s

In the following we describe the scheduled timetable of the buses for a subset of the stops:

Deliverable WP2-M1
7

2.4. Average waiting times 2. Big Data & Public Transportation

Stop: 240491 - St. Patrick Street - Curraheen
Weekdays → 7:10, 7:14, 07:20, 7:31, 7:39, 7:49, 7:59, 8:09, 8:29, 8:39, 8:49, 8:59,

9:09, 9:16, 9:19, 9:26, 9:36, 9:46, 9:56, 10:06
Saturdays: → 7:10, 7:25, 7:45, 8:05, 8:25, 8:45, 9:05, 9:25, 9:51, 10:11
Sundays: → 9:20, 9:54, 10:14

Stop: 240561 - UCC WGB - Curraheen
Weekdays → 7:18, 7:26, 7:32, 7:43, 7:51, 8:01, 8:11, 8:21, 8:41, 8:51, 9:01, 9:11,

9:21, 9:25, 9:31, 9:35, 9:45, 9:55, 10:05
Saturdays: → 7:16, 7:31, 7:51, 8:11, 8:31, 8:51, 9:11, 9:31, 9:59, 10:19
Sundays: → 9:27, 10:02

Stop: 240001 - CIT Technology Park - Curraheen
Weekdays → 7:08, 7:28, 7:42, 7:48, 7:59, 8:07, 8:17, 8:27, 8:37, 8:54, 9:04, 9:14,

9:24, 9:34, 9:37, 9:44, 9:47, 9:57, 10:07
Saturdays: → 7:05, 7:25, 7:40, 8:00, 8:20, 8:40, 9:00, 9:20, 9:40, 10:12
Sundays: → 9:37, 10:11

Stop: 241111 - CIT Technology Park - Lotabeg
Weekdays → 16:01, 16:11, 16:21, 16:31, 16:45, 16:51, 17:01, 17:11, 17:21, 17:31,

17:45, 17:51, 18:01, 18:11, 18:21, 18:31, 18:41, 18:51, 19:11
Saturdays → 16:01, 16:11, 16:21, 16:31, 16:41, 16:51, 17:01, 17:11, 17:21, 17:31,

17:41, 17:51, 18:01, 18:11, 18:31, 18:51, 19:11
Sundays → 16:11, 16:31, 16:51, 17:11, 17:31, 17:51, 18:11, 18:31, 18:51, 19:11

Stop: 240101 - UCC WGB - Lotabeg
Weekdays → 16:00, 16:06, 16:16, 16:26, 16:36, 16:46, 16:58, 17:04, 17:14, 17:24,

17:34, 17:44, 17:58, 18:04, 18:14, 18:24, 18:34, 18:44, 18:54, 19:04
Saturdays → 16:03, 16:13, 16:23, 16:33, 16:43, 16:53, 17:03, 17:13, 17:23, 17:33,

17:43, 17:53, 18:03, 18:12, 18:22, 18:42, 19:02
Sundays → 16:04, 16:24, 16:44, 17:04, 17:24, 17:44, 18:04, 18:24, 18:44, 19:04

Stop: 240171 - Patrick Street - Lotabeg
Weekdays → 16:03, 16:13, 16:23, 16:33, 16:43, 16:53, 17:03, 17:10, 17:20, 17:30,

17:40, 17:50, 18:00, 18:10, 18:20, 18:30, 19:00
Saturdays → 16:06, 16:16, 16:26, 16:36, 16:46, 16:56, 17:06, 17:16, 17:26, 17:36,

17:46, 17:56, 18:06, 18:22, 18:52, 19:12
Sundays → 16:15, 16:35, 16:55, 17:15, 17:35, 17:55, 18:15, 18:35, 18:55, 19:15

2.4 Average waiting times

Algorithm 2.5 describes the process to calculate the average daily and monthly waiting times. Lines
2 and 3 load and pre-process the observations in the raw dataset. Lines 4-5 filter out irrelevant data.
Lines 5 to 7 aggregate the average daily for the indicated months. Lines 10-12 collect and display the
final output.

8
Deliverable WP2-M1

2. Big Data & Public Transportation 2.4. Average waiting times

Algorithm 2.5: Average Waiting Times week
1 def a v e r a g e w a i t i n g t i m e (sc , m y d a t a s e t d i r , s t number , m o n t h l i s t) :
2 inputRDD = sc . t e x t F i l e (m y d a t a s e t d i r) # Loading t h e d a t a s e t
3 linesRDD = inputRDD . map (p r o c e s s l i n e) # Pre−p r o c e s s i n g
4 s ta t ionRDD = linesRDD . f i l t e r (

lambda l i n e : (l i n e [0] == s t n u m b e r) and
(l i n e [4] [3 : 5] in m o n t h l i s t)) # S e l e c t i n g t h e s t .

5 infoRDD = sta t ionRDD . map (lambda l i n e : (l i n e [3] + ” ” +
l i n e [4] [3 : 5] , (l i n e [5] , l i n e [7]))) # S e l e c t i n g r e l e v a n t d a t a

6 wai t ing t imeRDD = infoRDD . mapValues (lambda v a l :
t i m e t o i n t (v a l [1])− t i m e t o i n t (v a l [0])) # Wai t i ng t ime p e r o b s e r v a t i o n

7 aggregatedRDD = wai t ing t imeRDD . combineByKey (
lambda x : (x , 1) ,
lambda x , y : (x [0] + y , x [1] + 1) ,
lambda x , y : (x [0] + y [0] , x [1] + y [1])) # D a i l y and monthly w a i t i n g t ime

8 averageRDD = aggregatedRDD . mapValues (
lambda x : f l o a t (x [0]) / f l o a t (x [1])) #Avg . d a i l y and monthly d a t a

9 solut ionRDD = averageRDD . s o r t B y (lambda i t em : i t em [1])
10 resVAL = solut ionRDD . c o l l e c t () # A g g r e g a t i n g d a t a
11 f o r i t em in resVAL :
12 p r i n t (i t em) # D i s p l a y i n g t h e r e s u l t s

Figure 2.1 summaries the average daily waiting times for each month. Interestingly, the average
is consistently higher during the weekends than during the weekdays. September and October are
the months with higher daily waiting times with an average waiting time of more than 20 minutes
on Sundays. July reports the daily with the lowest average waiting time with about 2.6 minutes on
Wednesdays.

Figure 2.1: Daily waiting time for each month of the year - Stop: 240491

Deliverable WP2-M1
9

3 Big Data & Wind Power

As of 2017 renewable energies contributed with about 9% of the energy needs in Ireland with a
national target of 40% by 2020 [5]. In this milestone, we provide an initial investigation of the current
availability of wind energy in Ireland. We recall that wind energy is intermittent and only available
when certain meteorological conditions are met. We provide a set of algorithms in Spark SQL (using
the PySpark library with DataFrames) to compute general statistics about the amount of wind energy
vs. total energy needs in Ireland. In Spark SQL, a DataFrame abstraction handles distributed tables
containing containing a number of rows, each one with a number of columns.
In this milestone we analyse the energy demand of this year (until the end of August). The dataset has
been collected in 15-minute intervals. [6] reports the energy needs in Ireland (e.g., energy demand)
with three columns, i.e., date, actual energy consumption in kWh, and the region (i.e., Republic of
Ireland, Northern Ireland, and the entire island). Likewise [6] reports the amount of wind power with
four columns, i.e., date, expected wind power, actual wind power, and region. The expected amount
of wind energy helps the national grid to decide to switch off the turbines when the supply of energy
exceeds the demand or to prepare contingency plans to supply the demand in the absent of enough
power from the wind farms.

3.1 Monthly Average

In this section, we analyse the monthly average energy needs of Ireland vs. the available wind energy.
Algorithm 3.1 provides a description of the pre-processing method to read and load the dataset from
the HDFS into Spark SQL as a DataFrame. Lines 2 and 3 define the structure of the input data, Lines
4 -9 load the dataset into the demand/wind dataframes and remove missing and duplicated data. Lines
10-13 re-defines the date attributes in order to filter out observations outside the relevant time window.

Algorithm 3.1: Loading Wind Data
1def ReadDataFrames (sc , s d d i r , w i n d d i r) :
2 my schema demand = S t r u c t T y p e ([

S t r u c t F i e l d (” d a t e ” , TimestampType () , True) ,
S t r u c t F i e l d (” A c t u a l ” , I n t e g e r T y p e () , True) ,
S t r u c t F i e l d (” Region ” , S t r i n g T y p e () , True)]) # System G e n e r a t i o n S t r u c t u r e

3 my schema wind = S t r u c t T y p e ([
S t r u c t F i e l d (” d a t e ” , TimestampType () , True) ,
S t r u c t F i e l d (” f o r e c a s t ” , I n t e g e r T y p e () , True) ,
S t r u c t F i e l d (” A c t u a l ” , I n t e g e r T y p e () , True) ,
S t r u c t F i e l d (” Region ” , S t r i n g T y p e () , True)]) #Wind G e n e r a t i o n S t r u c t u r e

4 demandDF = s p a r k . r e a d . format (” csv ”) . o p t i o n (” d e l i m i t e r ” , ” , ”) .
o p t i o n (” h e a d e r ” , ” t r u e ”) .
o p t i o n (” t imes t ampForma t ” , ” dd MMMM YYYY H:mm”) .
schema (my schema demand) . l o a d (s d d i r) # Loading Data

5 windDF = s p a r k . r e a d . format (” csv ”) . o p t i o n (” d e l i m i t e r ” , ” , ”) .
o p t i o n (” h e a d e r ” , ” t r u e ”) .
o p t i o n (” t imes t ampForma t ” , ” dd MMMM YYYY HH:mm”) .
schema (my schema wind) . l o a d (w i n d d i r) # Loading Data

6 windDF = windDF . dropna () # Miss ing d a t a

10

3. Big Data & Wind Power 3.1. Monthly Average

7 windDF = windDF . d r o p D u p l i c a t e s ([” d a t e ” , ” A c t u a l ”])
8 demandDF = demandDF . dropna () # Miss ing Data
9 demandDF = demandDF . d r o p D u p l i c a t e s ([” d a t e ” , ” A c t u a l ”])

10 demandDF = demandDF . withColumn (” n d a t e ” ,
d a t e f o r m a t (” d a t e ” , ”MM/ dd /YYYY”)) #Removing Minu tes and Hours

11 demandDF = demandDF . f i l t e r (demandDF [” d a t e ”] .
be tween (’2020−01−01 ’ , ’2020−09−01 ’)) # E v a l u a t i o n t i m e f r a m e

12 windDF = windDF . withColumn (” n d a t e ” ,
d a t e f o r m a t (” d a t e ” , ”MM/ dd /YYYY”)) #Removing Minu tes and Hours

13 windDF = windDF . f i l t e r (windDF [” d a t e ”] .
be tween (’2020−01−01 ’ , ’2020−09−01 ’)) # E v a l u a t i o n t i m e f r a m e

14 re turn [demandDF , windDF]

Algorithm 3.2 shows the spark implementation of the monthly average demand vs. wind energy.
The algorithm uses the groupby method to split the data into groups based on the month of the year.
As it can be seen in Figure 3.1 January, February, and March are the months with higher energy
consumption, while May is the month with the lowest energy consumption. As expected, the wind
energy production is not following the same patter as the energy consumption due to the variability
of the meteorological conditions in the year. Typically, the wind speed is higher during the winter
months and decreases towards the summer. Our findings indicate that February (resp. September) is
the month with highest (resp. lowest) production of wind energy.
It is important to recall that even though Figure 3.1 displays a significant drop in wind energy produc-
tion in March during the COVID-19 lockdown, we do not have enough evidence that this negatively
impacted the production of wind energy in Ireland. We rather attribute the lower wind energy pro-
duction in March to the annual seasonal patters. However a deep analysis, outside of the scope of the
project, would be required in order to statistically validate the impact of the lockdown in the wind
energy production in Ireland.

Figure 3.1: Monthly Energy (2020)

Deliverable WP2-M1
11

3.2. Daily Average 3. Big Data & Wind Power

Algorithm 3.2: Monthly Average
1def MonthlyAverage (sc , s d d i r , w i n d d i r) :
2 [demandDF , windDF] = ReadDataFrames (sc , s d d i r , w i n d d i r) # Loading Data
3 demandDF = demandDF . withColumn (” n d a t e ” ,

d a t e f o r m a t (” d a t e ” , ”MM/YYYY”)) # Reformat d a t e
4 demandDF = demandDF . groupBy (” n d a t e ”) . agg (sum (” A c t u a l ”) .
5 a l i a s (” D a i l y SG”)) . s o r t (’ n d a t e ’)
6 windDF = windDF . withColumn (” n d a t e ” ,
7 d a t e f o r m a t (” d a t e ” , ”MM/YYYY”)) # Reformat d a t e
8 windDF = windDF . groupBy (” n d a t e ”) . agg (sum (” A c t u a l ”) .

a l i a s (” D a i l y Wind”)) . s o r t (’ n d a t e ’)
9 f u l l D F = windDF . j o i n (demandDF , windDF . n d a t e ==demandDF . n d a t e) # c o n c a t d a t a f r a m e s

10 re turn f u l l D F

3.2 Daily Average

In this section, we describe our Spark implementation of the daily average energy production in Ire-
land. Algorithm 3.3 calculates the moving average by computing the average over a specific number
of days, lines 3-5 calculates the total daily energy production, line 5 defines the moving average
timeframe, and lines 6-8 calculate the moving average for both the energy demand and wind energy
production.

Algorithm 3.3: Daily Moving Average
1def Dai lyAverage (sc , s d d i r , w i n d d i r) :
2 [demandDF , windDF] = ReadDataFrames (sc , s d d i r , w i n d d i r) # Loading d a t a
3 demandDF = demandDF . groupBy (” n d a t e ”) .

agg (sum (” A c t u a l ”) . a l i a s (” D a i l y ”)) . s o r t (’ n d a t e ’) . # A g g r e g a t i n g en e r g y demand
4 windDF = windDF . groupBy (” n d a t e ”) .

agg (sum (” A c t u a l ”) . a l i a s (” D a i l y ”)) . s o r t (’ n d a t e ’) . # A g g r e g a t i n g wind en e r g y
5 w = Window . orderBy (’ n d a t e ’) . rowsBetween (−6 , 0) #7−day t i m e f r a m e
6 demandDF = demandDF . withColumn (’ System ’ , avg (’ D a i l y ’) . ove r (w)) # Averag ing demand
7 windDF = windDF . withColumn (’Wind ’ , avg (’ D a i l y ’) . ove r (w)) # Averag ing wind e ne rg y
8 f u l l D F = windDF . j o i n (demandDF , windDF . n d a t e ==demandDF . n d a t e) # Concat d a t a f r a m e s
9 re turn f u l l D F

Figure 3.2 displays the energy production in Ireland for the indicated timeframe. As expected, the
wind energy production is considerably lower than the demand and highly variable. This figure is
consistent with [6], however, [6] aggregates the energy supply and demand from different sources
(e.g., oil, gas, petrol, etc), while we report the data as generated in [1]. Similarly to [6] we observe a
lower energy demand after the COVID-19 lockdown in March. However, as previously indicated for
the monthly wind energy production additional a deep analysis would be required to study the impact
of the lockdown in the wind energy production.

12
Deliverable WP2-M1

3. Big Data & Wind Power 3.3. Hourly Average

Figure 3.2: Daily Moving Average (2020)

3.3 Hourly Average

In this section, we describe our Spark implementation of the hourly energy production in Ireland. We
recall that the one of the goals of the SMARTeBuses project is to maximise the use of wind energy
for the transition to eBuses. In this context, we need to identify suitable charging and discharging
times of the buses, therefore, we need to investigate times of the day with low energy demand and
large amounts of wind energy production.

Algorithm 3.4: Daily Moving Average
1def Hour lyAverage (sc , s d d i r , w i n d d i r) :
2 [demandDF , windDF] = ReadDataFrames (sc , s d d i r , w i n d d i r) # Loading d a t a
3 windDF = windDF . withColumn (” HFormat ” ,

d a t e f o r m a t (” d a t e ” , ” dd /MM/YYYY HH”))
4 windDF = windDF . withColumn (” HDate ” , hour (c o l (” d a t e ”))) # Hour ly f o r m a t
5 windDF = windDF . groupBy ([” HFormat ” , ” HDate ”]) .

agg (sum (” A c t u a l ”) . a l i a s (” Hour ly ”)) . s o r t (” HFormat ”) # A g g r e g a t i n g en e r g y
6 windDF = windDF . groupBy (” HDate ”) .
7 agg (avg (” Hour ly ”) . a l i a s (” Hour ly Wind”)) . s o r t (” HDate ”) # Hour ly f o r m a t
9 demandDF = demandDF . withColumn (” HFormat ” , # Averag ing

d a t e f o r m a t (” d a t e ” , ” dd /MM/YYYY HH”))
12 demandDF = demandDF . withColumn (” HDate ” , hour (c o l (” d a t e ”)))
14 demandDF = demandDF . groupBy ([” HFormat ” , ” HDate ”]) .

agg (sum (” A c t u a l ”) . a l i a s (” Hour ly ”)) . s o r t (” HFormat ”) # A g g r e g a t i n g en e r g y
17 demandDF = demandDF . groupBy (” HDate ”) .

agg (avg (” Hour ly ”) . a l i a s (” Hour ly SG”)) . s o r t (” HDate ”) # Averag ing
20 f u l l D F = windDF . j o i n (demandDF , windDF . HDate==demandDF . HDate) # Concat d a t a f r a m e s
22 re turn f u l l D F

Deliverable WP2-M1
13

3.3. Hourly Average 3. Big Data & Wind Power

Algorithm 3.4 outlines our algorithm. The algorithm starts by reformatting the date attribute to sub-
sequently split and aggregate hourly data. Figure 3.4 displays the outcome of the algorithm and it can
be observed that the energy demand peaks at about 6:00PM and 4:00AM is the hour with the lowest
demand. On the other hand, the wind energy production exhibits lower variation with a peak between
2:00PM and 4:00PM. However, we would like to remark that our algorithm takes into account the
overall average the time period. We plan to further analyse the hourly consumption at different times
of the year.

Figure 3.3: Hourly Average

14
Deliverable WP2-M1

4 Conclusions

In this milestone report we have described an set of algorithms implemented in Spark Core and Spark
SQL for a fast and scalable analysis of historical data of the 208 bus route in Cork city and the amount
of energy production (including wind energy) in Ireland. We plan to extend this initial analysis in
W2-D2 (General Analysis of Historical Data) with additional algorithms for the analysis of a larger
dataset for the bus network in Dublin. The Dublin dataset is considerably bigger than the current
study.

15

Bibliography

[1] EirGrid Group, “Smart Grid Dashboard,” http://smartgriddashboard.eirgrid.com, Accessed on
2020-10-30.

[2] I. Castiñeiras, “Deliverable WP2-D1, storing data in a hadoop cluster,” Aug 2020, tech. Rep.
WP2-D1.

[3] S. Rusitschka and E. Curry, Big Data in the Energy and Transport Sectors. Springer, 2016, pp.
225–244.

[4] S. Campos-Cordobes, J. del Ser, I. Laña, I. Olabarrieta, J. Sanchez-Cubillo, J. J. Sanchez-Medina,
and A. L. Torre-Bastida, Big Data in Road Transport and Mobility Research. Elsevier, 2018,
pp. 175–205.

[5] SEAI - Sustainable Energy Authority of Ireland, “Renewable energy in ireland - 2019 report,”
https://www.seai.ie/publications/Renewable-Energy-in-Ireland-2019.pdf.

[6] ——, “Tracking effect of covid-19 on energy supply and demand,” May 2020, Tech. Rep.

16

http://smartgriddashboard.eirgrid.com
https://www.seai.ie/publications/Renewable-Energy-in-Ireland-2019.pdf

SMART electric Buses

October 27, 2020

	1 Introduction
	2 Big Data & Public Transportation
	2.1 Number of observations in the dataset
	2.2 Buses arriving ahead or behind schedule
	2.3 List of buses scheduled for each day of the week
	2.4 Average waiting times

	3 Big Data & Wind Power
	3.1 Monthly Average
	3.2 Daily Average
	3.3 Hourly Average

	4 Conclusions

