
SEAI RD&D 2019

Storing Data in a Hadoop Cluster

Deliverable number: WP2-D1

This Project has received funding from the SEAI RD&D Programme.
Grand Award Number: 19/RDD/519

Project Acronym: SMARTeBuses
Project Full Title: SMART electric Buses
Grant Number: 19/RDD/519
Project URL: https://smartebuses.github.io/web/

Deliverable type: Deliverable
Dissemination level: Public (PU)
Delivery Date: August 31st, 2020
Number of pages: 65
Keywords: Big Data, Distributed File System, Large-scale Data Analysis, SMARTe-

Buses, Artificial Intelligence
Authors: Dr. Ignacio Castiñeiras, Cork Institute of Technology
Peer review: Dr. Alejandro Arbelaez, University College Cork

https://smartebuses.github.io/web/

Contents

1 Introduction 5

2 Big Data Ecosystem 6
2.1 Hadoop . 6

2.1.1 Hadoop Distributed File System . 6
2.1.2 Hadoop Yarn . 8
2.1.3 Hadoop MapReduce . 8

2.2 Spark . 12
2.2.1 Data Storage and Resource Manager . 12
2.2.2 Spark Core . 13
2.2.3 Spark SQL . 14

3 Configuration and Code Examples 16
3.1 Local Cluster . 16
3.2 Java . 16
3.3 Python . 17
3.4 Hadoop . 19

3.4.1 Installing Hadoop . 19
3.4.2 Start a Hadoop Cluster . 22
3.4.3 Dataset . 23
3.4.4 HDFS . 24
3.4.5 MapReduce . 31
3.4.6 Stop a Hadoop Cluster . 40

3.5 Spark . 41
3.5.1 Installing Spark . 41
3.5.2 Spark Core . 42
3.5.3 Spark SQL . 51

4 Conclusions and Future Work 62

1

List of Figures

2.1 HDFS and Local File System . 7
2.2 File to Block and Block Replication . 7
2.3 MapReduce Application Phases . 10
2.4 Map Phase . 11
2.5 Reduce Phase . 11
2.6 Spark Components . 12
2.7 Spark Components . 13
2.8 Spark Core: User Program . 14
2.9 Spark Core: Program Execution . 14

3.1 Script openJDK 8.sh . 16
3.2 Script python 3 7 7.sh . 18
3.3 Script Hadoop 2 7 1.sh . 20
3.4 Script Start Hadoop Cluster.sh . 22
3.5 Script data analysis.sh . 24
3.6 Cluster Overview . 25
3.7 HDFS . 26
3.8 Dataset Folder: my dataset . 27
3.9 Command put: my dataset from local file system to HDFS 28
3.10 HDFS With New Folder my result . 29
3.11 Command get: my result from HDFS to local file system 30
3.12 ResourceManager Overview . 31
3.13 ResourceManager: MapReduce Application in Progress 32
3.14 ResourceManager: MapReduce Application Finished 33
3.15 HDFS: MapReduce Result in my result . 34
3.16 HDFS: MapReduce Result Brought Back to Local File System 35
3.17 my mapper.py: Import Section . 36
3.18 my mapper.py: my map Function . 37
3.19 my mapper.py: Main Entry Point . 38
3.20 my mapper.py: Import Section . 38
3.21 my mapper.py: my map Function . 39
3.22 my mapper.py: Main Entry Point . 40
3.23 Script Stop Hadoop Cluster.sh . 40
3.24 Script Spark 2 4 5.sh . 41
3.25 my Spark Core example.py: Import Section . 43
3.26 my Spark Core example.py: my spark core job Function 44
3.27 my Spark Core example.py: Main Entry Point . 45
3.28 inputRDD Content . 46
3.29 all wordsRDD Content . 46
3.30 clean wordsRDD Content . 46
3.31 RDDs Content . 46

2

List of Figures List of Figures

3.32 ResourceManager: Spark Core Application in Progress 47
3.33 ResourceManager: Spark Core Application Finished 48
3.34 HDFS: Spark Core Result in my result . 49
3.35 HDFS: Spark Core Result Brought Back to Local File System 50
3.36 my Spark SQL example.py: Import Section . 51
3.37 my Spark SQL example.py: my spark sql job Function 53
3.38 my Spark SQL example.py: my spark sql job Function 54
3.39 my Spark SQL example.py: Main Entry Point . 55
3.40 inputDF Content . 56
3.41 sentenceDF Content . 56
3.42 wordsDF Content . 56
3.43 cleanDF Content . 57
3.44 lowerDF Content . 57
3.45 solutionDF Content . 57
3.46 ResourceManager: Spark SQL Application in Progress 58
3.47 ResourceManager: Spark SQL Application Finished 59
3.48 HDFS: Spark SQL Result in my result . 60
3.49 HDFS: Spark SQL Result Brought Back to Local File System 61

Deliverable WP2-D1
3

List of Acronyms

HDFS Hadoop Distributed File System
JRE Java Runtime Environment
Yarn Yet Another Resource Negotiator
DSL Domain Specific Language
RDD Resilient Distributed Datasets

4

1 Introduction

Big Data is the ability of society to harness information in novel ways to produce useful insights or
goods and services of significant value [1]. In this work package we focus on the use of Big Data
technology to store, analyse and collect online public data related to the bus network (e.g., routes,
timetables, delays) and wind power available from wind farms in the country. Furthermore, we focus
on developing a realistic reference road network with essential information for a strategic planning
and design of an electric bus network in Ireland. In line with the goals of the work package, we
introduce the Big Data ecosystem of tools we are going to use for storing and analysis bus and wind
power-related large-datasets.
The document is structured as follows:
Chapter 2 presents our ecosystem of tools to store and analyse large-scale datasets. First, Section 2.1
presents Apache Hadoop [2], specifically its components Hadoop Distributed File System (HDFS)
[3, 4], Hadoop Yarn [5, 6] and Hadoop MapReduce [7, 8] for storing and analysing datasets. Then,
Section 2.2 presents Apache Spark [9] as our primary data analytics tool (relying on HDFS and Yarn
for data storage and job management, resp). In particular, it presents its components Spark Core
[10, 11] and Spark SQL [12, 13]. While Python is selected as the programming language of choice
(with both MapReduce and Spark providing an API for it), the data analytics applications will run on
top of the Java Runtime Environment (JRE) [14].
Chapter 3 serves as a tutorial for installing and configuring such ecosystem of tools, as well as pre-
senting some introductory data analysis examples. First, Section 3.1 presents the specs of the local
server. Then, sections 3.2, 3.3, 3.4 and 3.5 present the setup of Java, Python, Hadoop and Spark, resp.,
including some introductory data analysis examples running on the local cluster.

5

2 Big Data Ecosystem

This chapter presents our ecosystem of tools to store and analyse large-scale datasets.

2.1 Hadoop

Apache Hadoop is a data framework for store and process big data distributed on clusters of com-
modity machines. Using the definition of its own website: “The Apache Hadoop software library is
a framework that allows for the distributed processing of large data sets across clusters of comput-
ers using simple programming models. It is designed to scale up from single servers to thousands
of machines, each offering local computation and storage. Rather than rely on hardware to deliver
high-availability, the library itself is designed to detect and handle failures at the application layer,
so delivering a highly-available service on top of a cluster of computers, each of which may be prone
to failures” [2].
The main idea of the framework is for data to be distributed among the nodes of the cluster for both its
storage and processing. This way, each individual node works as much as possible on the data it hosts,
minimising the need to talk to other nodes of the cluster (and thus minimising the data transferred over
the network). Data is replicated among different nodes of the cluster for redundancy, availability and
fault tolerant-free computations. If a node is unexpectedly shut down, the system is still ready to
store and process the entire dataset without suffering a noticeable penalisation in the performance to
achieve it. At failure, the workload of the node is assumed by any other alive node of the cluster,
without any loss of data. Thus, the outcome of the computation does not become affected. When the
node recovers, it just joins again the set of operative nodes, becoming available again for storing and
processing data. Likewise, the addition of new nodes to the cluster is easy, and provides extra storage
and processing capacity under demand. As the nodes cooperate on the tasks, the system is capable of
dealing with peak workloads, which result only in slightly penalisation for the overall performance.
There are 3 components of Hadoop that we are going to use:

• HDFS: A distributed file system designed to efficiently allocate data across the multiple com-
modity machines (nodes) of the cluster.

• Yet Another Resource Negotiator (Yarn): A resource manager, responsible for schedule and
monitor the execution of our data analysis applications.

• MapReduce: A framework for easily writing applications processing large-scale datasets across
a cluster in a reliable, fault-tolerant manner.

2.1.1 Hadoop Distributed File System

We use HDFS as a distributed file system to store our datasets across a cluster. The master/slave
architecture of HDFS consists of two types of daemons:

• A single NameNode. This is a master daemon managing the file system namespace and regu-
lating access to files. In brief, the NameNode acts as the table of contents: it contains no single
file itself, but it knows all files in the filesystem, as well as their distribution among the nodes.

6

2. Big Data Ecosystem 2.1. Hadoop

• A number of DataNodes, usually one per node in the cluster. This is a slave daemon managing
the storage of the node it runs on. That is, the DataNode controls all the files stored in the node,
but it lacks any knowledge about the data stored in other nodes.

Figure 2.1 presents a cluster with 4 nodes, where 1 node contains the NameNode and the other 3 a
DataNode each. As we can see, the memory storage of each node contains its own local file system
and its fraction/slice of the HDFS.

Figure 2.1: HDFS and Local File System

HDFS is designed to reliably store very large files. Its approach consists on splitting each file into
manageable blocks and replicate each blocks among multiple nodes (typically 3, although this is con-
figurable). Figure 2.2 shows a file split into 3 blocks when being written to HDFS and the replication
of each block among the DataNodes.

Figure 2.2: File to Block and Block Replication

We envision our data analysis applications to follow a very simple flow:
• Read the dataset from a logic folder of HDFS (e.g., my_dataset).

Deliverable WP2-D1
7

2.1. Hadoop 2. Big Data Ecosystem

• Write the data analysis result to a new logic folder of HDFS (e.g., my_result).
The above requires us to:

• Create a new logic folder my_dataset into HDFS.
• Bring my_dataset from the local file system to the HDFS folder.
• Bring my_result from HDFS to the local file system.

HDFS provide the specific commands mkdir, put and get to accomplish the aforementioned tasks,
resp. In brief, any read/write operation is coordinated by the NameNode, who refers to the associated
DataNode of the node hosting the block for managing it.

2.1.2 Hadoop Yarn

We use the Yarn system as a resource manager, responsible for schedule and monitor the execution of
our data analysis applications.
The key idea of Yarn is to split up the functionalities of resource management and job schedul-
ing/monitoring into separate daemons:

• A single ResourceManager. This is a master daemon distributing the resources of the cluster
among all the applications. In an analogy with HDFS, it will play the role of the NameNode,
in the sense it executes nothing by itself, but it knows all the resources and tasks to be executed
among the nodes of the cluster.

• A NodeManager per node in the cluster. This is a slave daemon monitoring the resource usage
(cpu, memory, disk, network) of the node it runs on. In an analogy with HDFS, it will play the
role of the DataNode, in the sense it controls the resources of the node and monitors the execu-
tion of the tasks assigned to it, but it lacks any knowledge about the resources and execution in
other nodes of the cluster.

In brief, given a MapReduce or Spark application, the ResourceManager will provide the applica-
tion with resources from 1 or more nodes of the cluster. Then, each NodeManager involved in the
execution of the application will accomplish its assigned tasks with the resources provided.

2.1.3 Hadoop MapReduce

We use MapReduce as our first framework for easily writing applications processing large-scale
datasets across a cluster in a reliable, fault-tolerant manner. A MapReduce application can be seen as
a pipeline process operating on files that uses streaming for communication and high-level program-
ming features to isolate the data processing from both the cluster and the pipeline complexities.
As previously stated, we envision a MapReduce application to read the dataset from a HDFS folder
(e.g., my_dataset) and produce its results to a novel HDFS folder (e.g., my_result). In doing so,
the application is to follow 3 phases: map, sort and reduce. Figure 2.3 presents an introductory
word count MapReduce application, viewing its different phases from a logic and a physical point of
views, resp.
As we can see, the Map Phase processes the entire dataset of my_dataset in a completely parallel
manner. On doing so, each data block is processed on its own node as much as possible, with typically
a Map process allocated to each block. The Map functionality is to be programmed just once, with
all the processes applying it to their respective data slice (cf. middle picture of Figure 2.3). While
the right level of parallelism for Map processes seems to be around 10-100 per node, in general the
framework figures out the number of processes to be applied, as well as the block allocation for them.

8
Deliverable WP2-D1

2. Big Data Ecosystem 2.1. Hadoop

This abstracts the cluster complexity from the user, who just has to focus on the programming of the
Map functionality.
To specify the Map functionality we make use of Hadoop Streaming [15], which abstracts the Map
process from its underlying programming language by only requiring it to be in the form of an exe-
cutable command. In our case, we choose to program the Map functionality in the form of a Python
script (e.g., my_mapper.py). Figure 2.4 shows my_mapper.py as a black-box. As we can see,
it must receive its input from the standard input, and produce a bunch of key-value pairs by writing
them to the standard output.
Coming back to Figure 2.3, we see that the Sort Phase sorts the outputs of the Map processes, which
are then input to the Reduce processes. Again, while the right level of parallelism for Reduce
processes seems to be around 1-2 per node, this is abstracted to the user who just has to focus on the
programming of the Reduce functionality. What it is ensured is that all sorted entries having the
same key are to be assigned to the same Reduce process.
As we did with the Map functionality, we use Hadoop Streaming to program the Reduce function-
ality in the form of a Python script (e.g., my_reducer.py). Figure 2.5 shows my_reducer.py
as a black-box. As we can see, it must receive the key-value pairs produced by Map as input from the
standard input, and produce a bunch of key-value pairs by writing them to the standard output.
Finally, the bulk of results from the Reduce Phase produce the new HDFS folder my_result. In
particular, the output of each Reduce process turns into one or more new blocks in the folder.

Deliverable WP2-D1
9

2.1. Hadoop 2. Big Data Ecosystem

Figure 2.3: MapReduce Application Phases

10
Deliverable WP2-D1

2. Big Data Ecosystem 2.1. Hadoop

Figure 2.4: Map Phase

Figure 2.5: Reduce Phase

Deliverable WP2-D1
11

2.2. Spark 2. Big Data Ecosystem

2.2 Spark

We use Apache Spark as our second framework for easily writing applications processing large-scale
datasets across a cluster in a reliable, fault-tolerant manner. Using the definition of its own website:
Apache Spark is a unified analytics engine for large-scale data processing [9]. It is an an open-source,
distributed, general-purpose, cluster-computing framework designed for 3 purposes:

• Be easy to use, allowing us to develop applications locally, using a high-level API.
• Be fast, enabling interactive use and complex algorithms.
• Be general, allowing us to combine multiple types of computations, including text, SQL, graph

and machine learning processing (both offline and online) that might previously have required
different engines.

Spark itself is written in Scala [16], and runs on the Java Virtual Machine (JVM). However, it offers
simple APIs in Scala, Java, Python and R. In our case, we choose Python to program our data analysis
applications.
Figure 2.6 presents the different components of Spark. We are going to rely on HDFS for data
storage and on Yarn for resource management and job scheduling. For developing our data analytics
applications we are going to use Spark Core and Spark SQL.

Figure 2.6: Spark Components

2.2.1 Data Storage and Resource Manager

On its own, Spark is not a data storage solution; it performs computations on Java Virtual Machines
(JVMs) that last only for the duration of a Spark application. While Spark can be run locally on a
single machine with a single JVM (called local mode), this mode is only useful for debugging and
testing purposes. Once the application is tested, Spark is designed to efficiently scale up from one to
many thousands of compute nodes, so we will use it in distributed mode across a cluster.
When used in a cluster, Spark is used in tandem with a distributed storage system (in our case HDFS)
and with a cluster manager (in our case Yarn).

• HDFS is used to provide the input dataset used by Spark application (e.g., the HDFS folder
my_dataset), as well as to stable store the results such application produces (e.g., the HDFS
folder my_result).

• Yarn is used to schedule the execution of a Spark application, and for assigning and monitoring
the resources of each node executing it.

12
Deliverable WP2-D1

2. Big Data Ecosystem 2.2. Spark

Figure 2.7: Spark Components

Figure 2.7 presents a general view of the execution of a Spark application in a cluster. The mas-
ter/slave architecture of Spark consists of two types of daemons:

• A single SparkDriver. This is a master daemon coordinating the execution of the User program.
In an analogy to HDFS, it plays the role of the NameNode, in the sense that it does not compute
anything by itself, but controls who is executing each task and how is this execution going.

• A number of SparkExecutors. This is a slave daemon managing the execution of a single given
task. A number of SparkExecutors are distributed among the cluster. While the number of cores
per executor can be configured at the user program, typically they correspond to the physical
cores on a node, and an executor cannot span cores of different nodes. In an analogy to HDFS, a
SparkExecutor plays the role of the DataNode, in the sense that it carries out the computation of
the task being given (and reports its status to the SparkDriver), but lacks any knowledge about
the tasks executed by other SparkExecutors.

2.2.2 Spark Core

Spark Core contains the basic functionality of Spark, including:

• The main data abstraction being offered to users to express their programs: The Resilient Dis-
tributed Datasets (RDD)

• The implementation of the SparkDriver and SparkExecutor daemons needed to execute a Spark
application. This includes the Spark driver functionality to generate a logical plan (Direct
Acyclic Graph per job, with concrete stages and tasks) and a physical plan (schedule and track-
ing of the tasks execution).

• Other functionality such as memory management, fault recovery and the interaction with stor-
age systems.

An RDD simply defines a collection of items. It is:

• Indivisible (logically presented as an atomic variable).

• Generic, but statycally-typed (available for any data type T as long as the type T sticks for all
its elements).

• Lazily-evaluated (only computed if required, and as much as required).

• Non-mutable (cannot change type nor value).

In this context, we can think of an RDD as a list (in the sense that its elements can be repeated) or a
set (in the sense that its elements have no particular default order).

The API of Spark Core offers Creation, Transformation, Persistent and Observer operations. Figure
2.8 presents the life-cycle of a Spark Core user program, based on these operations.

Deliverable WP2-D1
13

2.2. Spark 2. Big Data Ecosystem

Figure 2.8: Spark Core: User Program

Figure 2.9 presents the execution of a Spark Core application. The application is defined as a set of
Jobs triggered by the action operations of the user program. Each Job consists on a sequential execu-
tion of stages. Each new stage is caused by a shuffle of information among nodes executing different
tasks. While no external communication is needed, each SparkExecutor works locally, performing a
pipeline of tasks.

Figure 2.9: Spark Core: Program Execution

2.2.3 Spark SQL

Spark SQL is the module integrating relational processing with the functional programming API
of Spark. By using it, we can benefit of a higher-level data abstraction (DataFrames) for ingesting,
querying and persisting (semi)structured data using relational queries via a Domain Specific Language
(DSL). Under the hood, Spark SQL translates a DataFrame-based program into an equivalent RDD-
based one via a catalyst optimiser (which semantically analyse the query expressed by the user) and a
Tungsten encoder optimiser (which translates the query to an equivalent binary RDD-based format).
An DataFrame simply defines a collection of items. It is:

14
Deliverable WP2-D1

2. Big Data Ecosystem 2.2. Spark

• Indivisible (logically presented as an atomic variable).
• Structured, in the sense of having a fixed number of fields, each of them of a concrete data type

T.
• Lazily-evaluated (only computed if required, and as much as required).
• Non-mutable (cannot change type nor value).

In this context, we can think of a DataFrame as a table in a relational database (in the sense that each
Row follows the schema) or a collection in a NoSQL document oriented database (in the sense that
the content of the collection is distributed).
Similarly to Spark Core, the API of Spark SQL offers Creation, Transformation, Persistent and Ob-
server operations. Spark SQL provides them via a catalog of DSL operators. This DSL is being
updated on each new release of Spark, making Spark SQL more and more expressive, and thus mak-
ing it easier for the user to develop its data analysis applications.

Deliverable WP2-D1
15

3 Configuration and Code Examples

This chapter serves as a tutorial for installing and configuring the ecosystem of tools, as well as
presenting some introductory data analysis examples.

3.1 Local Cluster

The local cluster used in this project consist on a server with the following specs:

• Processor: Intel Xeon W-2175 2.5GHz, 4.3GHz Turbo, 14C, 19.25M Cache, HT, (140W)
DDR4-2666.

• RAM: 64GB 4x16GB DDR4 2666MHz RDIMM ECC Memory.
• Hard Drive: M.2 2TB PCIe NVMe Class 40 Solid State Drive.
• Operating System: Ubuntu 20.04 LTS [17].

The server has been purchased with the funding for equipment assigned to the project.

3.2 Java

In this section we discuss how to install and configure Java OpenJDK 8 [18]. While there is a more re-
cent version available (Java OpenJDK 11 [19]), Java OpenJDK 8 is the most recent version supported
by the latest stable release of Spark, thus making it our JRE of choice.
Figure 3.1 presents the script to install and configure Java OpenJDK 8. It can be run from a terminal
in our local server.

(01) #!/bin/bash
(02) sudo apt-get update
(03) sudo apt-get install openjdk-8-jdk
(04) sudo update-alternatives --config java
(05) sudo update-alternatives --config javac
(06) sudo gedit ˜/.bashrc

Figure 3.1: Script openJDK 8.sh

Next, we present more detailed instructions about the steps followed in the script:

• (01) #!/bin/bash

We indicate bin bash as the interpreter being used.
• (02) sudo apt-get update

We update apt-get, the tool to handle packages in Linux.

16

3. Configuration and Code Examples 3.3. Python

• (03) sudo apt-get install openjdk-8-jdk

We install Java OpenJDK 8.
• (04) sudo update-alternatives --config java

We ensure that Java OpenJDK 8 is the default JRE. The command shows the different JREs
installed in the system, highlighting with a symbol * the default one. For example, in the
case below both Java OpenJDK 8 and Java OpenJDK 11 are installed in the system, with Java
OpenJDK 8 being the default one being used.

Selection Path
--

0 /usr/lib/jvm/java-11-openjdk-amd64/bin/java
1 /usr/lib/jvm/java-11-openjdk-amd64/bin/java

* 2 /usr/lib/jvm/java-8-openjdk-amd64/jre/bin/java

• (05) sudo update-alternatives --config javac

We ensure that Java OpenJDK 8 is the default Java compiler. The command shows the different
Java compilers installed in the system, highlighting with a symbol * the default one. For exam-
ple, in the case below both Java OpenJDK 8 and Java OpenJDK 11 are installed in the system,
with Java OpenJDK 8 being the default one being used.

Selection Path
--

0 /usr/lib/jvm/java-11-openjdk-amd64/bin/javac
1 /usr/lib/jvm/java-11-openjdk-amd64/bin/javac

* 2 /usr/lib/jvm/java-8-openjdk-amd64/bin/javac

• (06) sudo gedit ˜/.bashrc

We use super user privileges with the text editor gedit so as to modify the content of the
configuration file bashrc. In our case we add:
export JAVA_HOME="/usr/lib/jvm/java-1.8.0-openjdk-amd64"
export PATH=$PATH:/usr/lib/jvm/java-1.8.0-openjdk-amd64/bin

3.3 Python

In this section we discuss how to install and configure Python 3.7.7 [20]. While there is a more recent
version available (Python 3.8.2 [21]), Python 3.7.7 is the most recent version supported by the latest
stable release of Spark, thus making it our programming language of choice.
Figure 3.2 presents the script to install and configure Python 3.7.7. It can be run from a terminal in
our local server.
Next, we present more detailed instructions about the steps followed in the script:

• (01) #!/bin/bash

We indicate bin bash as the interpreter being used.
• (02) sudo apt update

We update apt, the tool for managing deb packages in Ubuntu.
• (03) sudo apt install build-essential zlib1g-dev libncurses5-dev \

libgdbm-dev libnss3-dev \

Deliverable WP2-D1
17

3.3. Python 3. Configuration and Code Examples

(01) #!/bin/bash
(02) sudo apt update
(03) sudo apt install build-essential zlib1g-dev \

libncurses5-dev libgdbm-dev libnss3-dev \
libssl-dev libreadline-dev \
libffi-dev libsqlite3-dev \

wget libbz2-dev
(04) wget https://www.python.org/ftp/python/3.7.7/Python-3.7.7.tgz
(05) tar -xf Python-3.7.7.tgz
(06) cd Python-3.7.7
(07) ./configure --enable-optimizations
(08) make -j $(nproc)
(09) sudo make altinstall
(10) sudo python3.7 -m pip install -U pip
(11) which python3.7
(12) python3.7

Figure 3.2: Script python 3 7 7.sh

libssl-dev libreadline-dev \
libffi-dev libsqlite3-dev \

wget libbz2-dev

We use apt to install the required dependency packages.
• (04) wget https://www.python.org/ftp/python/3.7.7/Python-3.7.7.tgz

We download Python 3.7.7 as a Gzipped source tarball.
• (05) tar -xf Python-3.7.7.tgz

We extract it.
• (06) cd Python-3.7.7

We move to the extracted Python 3.7.7 folder.
• (07) ./configure --enable-optimizations

We run the configure script, which looks for dependencies.
• (08) make -j $(nproc)

We run the make accross the number of processors we have in the server.
• (09) sudo make altinstall

We use altinstall instead of install so as to allow Python 3.7.7 to co-exist with other
potential versions installed in the server.

• (10) sudo python3.7 -m pip install -U pip

We upgrade pip, the package installer for Python, to its most recent version 20.1 [22].
• (11) which python3.7

We get the location of Python3.7.7 in our server. In this case it is:
/usr/local/bin/python3.7

18
Deliverable WP2-D1

3. Configuration and Code Examples 3.4. Hadoop

• (12) python3.7

We launch Python3.7.7 to ensure it has been installed. In this case we should get the following:
Python 3.7.7 (default, May 6 2020, 16:41:07)
[GCC 7.5.0] on linux
Type "help", "copyright", "credits" or "license"
for more information.
>>>

3.4 Hadoop

In this section we discuss how to install, configure and manage a Hadoop cluster. We also present a
MapReduce application running on the cluster.

3.4.1 Installing Hadoop

We install and configure Hadoop 2.7.1 [23]. While there is a more recent version available (Hadoop
3.2.1 [24]), Hadoop 2.7.x is the most recent version supported by the latest stable release of Spark,
thus making it our version of choice.
Figure 3.3 presents the script to install and configure Hadoop 2.7.1 as a Single Node Cluster with
Pseudo-Distributed Operation. We choose this mode as our cluster contains just 1 node. Thus, all the
HDFS, Yarn, MapReduce and Spark daemons presented in Chapter 2 still take place, each of them
running as an independent process. The script can be run from a terminal in our local server.
Next, we present more detailed instructions about the steps followed in the script:

• (01) #!/bin/bash

We indicate bin bash as the interpreter being used.
• (02) sudo apt-get install openssh-server openssh-client

We need to be able to access localhost by ssh without a passphrase. Thus, first we use apt-get to
install OpenSSH, which is the premier connectivity tool for remote login with the ssh protocol
[25].

• (03) ssh-keygen -t rsa -P ""

We use ssh-keygen to generate a public/private rsa key pair. If run successfully, it saves the
identification and public key in $HOME\.ssh/.

• (04) cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

We use the command cat to append the public keys (generated by ssh-keygen) to our file of
listed authorised keys.

• (05) ssh localhost

We ensure we can connect now by ssh to the localhost without a passphrase.
• (06) wget https://archive.apache.org/dist/hadoop/

common/hadoop-2.7.1/hadoop-2.7.1.tar.gz

We download Hadoop 2.7.1 as a Gzipped source tarball.
• (07) tar -xzvf hadoop-2.7.1.tar.gz

We extract it.

Deliverable WP2-D1
19

3.4. Hadoop 3. Configuration and Code Examples

(01) #!/bin/bash
(02) sudo apt-get install openssh-server openssh-client
(03) ssh-keygen -t rsa -P ""
(04) cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys
(05) ssh localhost
(06) wget https://archive.apache.org/dist/hadoop/

common/hadoop-2.7.1/hadoop-2.7.1.tar.gz
(07) tar -xzvf hadoop-2.7.1.tar.gz
(08) sudo mv hadoop-2.7.1 /usr/local/hadoop/
(09) sudo gedit ˜/.bashrc
(10) sudo gedit /usr/local/hadoop/etc/hadoop/hadoop-env.sh
(11) sudo gedit /usr/local/hadoop/etc/hadoop/core-site.xml
(12) sudo gedit /usr/local/hadoop/etc/hadoop/hdfs-site.xml
(13) sudo gedit

/usr/local/hadoop/etc/hadoop/mapred-site.xml.template
(14) sudo cp

/usr/local/hadoop/etc/hadoop/mapred-site.xml.template
/usr/local/hadoop/etc/hadoop/mapred-site.xml

(15) sudo gedit /usr/local/hadoop/etc/hadoop/yarn-site.xml
(16) hadoop

Figure 3.3: Script Hadoop 2 7 1.sh

• (08) sudo mv hadoop-2.7.1 /usr/local/hadoop/

We move the extracted folder to /usr/local/hadoop.
• (09) sudo gedit ˜/.bashrc

We use super user privileges with the text editor gedit so as to modify the content of the
configuration file bashrc. In our case we add:
export PATH=$PATH:/usr/local/hadoop/bin/:/usr/local/hadoop/sbin/
export HADOOP_HOME=/usr/local/hadoop/
export HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop
export HADOOP_MAPRED_HOME=/usr/local/hadoop/
export HADOOP_COMMON_HOME=/usr/local/hadoop/
export HADOOP_HDFS_HOME=/usr/local/hadoop/
export YARN_HOME=/usr/local/hadoop/
export HADOOP_COMMON_LIB_NATIVE_DIR=/usr/local/hadoop/lib/native
export HADOOP_OPTS="-Djava.library.path=/usr/local/hadoop/lib"
export JAVA_LIBRARY_PATH=$HADOOP_HOME/lib/native:$JAVA_LIBRARY_PATH

• (10) sudo gedit /usr/local/hadoop/etc/hadoop/hadoop-env.sh

We use super user privileges with the text editor gedit so as to modify the content of the
configuration file hadoop-env.sh. In our case we add:
export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-amd64

20
Deliverable WP2-D1

3. Configuration and Code Examples 3.4. Hadoop

• (11) sudo gedit /usr/local/hadoop/etc/hadoop/core-site.xml

We use super user privileges with the text editor gedit so as to modify the content
of the configuration file core-site.xml. In our case we fill the (originally empty
<configuration></configuration>) configuration section with:

<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9000</value>
</property>
</configuration>

• (12) sudo gedit /usr/local/hadoop/etc/hadoop/hdfs-site.xml

We use super user privileges with the text editor gedit so as to modify the content
of the configuration file hdfs-site.xml. In our case we fill the (originally empty
<configuration></configuration>) configuration section with:

<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
</configuration>

• (13) sudo gedit
/usr/local/hadoop/etc/hadoop/mapred-site.xml.template

We use super user privileges with the text editor gedit so as to modify the content of the
configuration file mapred-site.xml.template. In our case we fill the (originally empty
<configuration></configuration>) configuration section with:

<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>

• (14) sudo cp
/usr/local/hadoop/etc/hadoop/mapred-site.xml.template
/usr/local/hadoop/etc/hadoop/mapred-site.xml

We use super user privileges to copy the file mapred-site.xml.template to the new file
mapred-site.xml.

• (15) sudo gedit /usr/local/hadoop/etc/hadoop/yarn-site.xml

We use super user privileges with the text editor gedit so as to modify the content
of the configuration file yarn-site.xml. In our case we fill the (originally empty
<configuration></configuration>) configuration section with:

<configuration>
<property>

<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>

Deliverable WP2-D1
21

3.4. Hadoop 3. Configuration and Code Examples

</property>
</configuration>

• (16) hadoop

We launch Hadoop 2.7.1 to ensure it has been installed. In this case we should get the following:
Usage: hadoop [--config confdir] [COMMAND | CLASSNAME]

CLASSNAME run the class named CLASSNAME
or
where COMMAND is one of:
fs run a generic filesystem user client
version print the version
jar <jar> run a jar file

note: please use "yarn jar" to launch
YARN applications, not this command.

checknative [-a|-h] check native hadoop and compression
libraries availability
distcp <srcurl> <desturl> copy file or directories recursively
archive -archiveName NAME -p <parent path> <src>* <dest>
create a hadoop archive
classpath prints the class path needed to get the
credential interact with credential providers

Hadoop jar and the required libraries
daemonlog get/set the log level for each daemon
trace view and modify Hadoop tracing settings

Most commands print help when invoked w/o parameters.

3.4.2 Start a Hadoop Cluster

We start the Hadoop Single Node Cluster with Pseudo-Distributed Operation.
Figure 3.4 presents the script to start the cluster. It can be run from a terminal in our local server.

(01) #!/bin/bash
(02) ssh localhost
(03) hdfs namenode -format
(04) start-dfs.sh
(05) start-yarn.sh
(06) hdfs dfs -mkdir /user/
(07) hdfs dfs -mkdir /user/my_HDFS/

Figure 3.4: Script Start Hadoop Cluster.sh

Next, we present more detailed instructions about the steps followed in the script:

• (01) #!/bin/bash

We indicate bin bash as the interpreter being used.

22
Deliverable WP2-D1

3. Configuration and Code Examples 3.4. Hadoop

• (02) ssh localhost

We connect by ssh to the localhost without a passphrase.

• (03) hdfs namenode -format

We ensure HDFS has some format. If the command is successfully executed, then we should
get the following, where ***MACHINE NAME*** represents the name of the server:

STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = ***MACHINE_NAME***/127.0.1.1
STARTUP_MSG: args = [-format]
STARTUP_MSG: version = 2.7.1
STARTUP_MSG: classpath =
STARTUP_MSG: java = 1.8.0_252
SHUTDOWN_MSG: Shutting down NameNode

at ***MACHINE_NAME***/127.0.1.1

• (04) start-dfs.sh

We start the HDFS daemons NameNode and DataNode. If the command is successfully exe-
cuted, then we should get the following, where ***USER NAME*** represents the name of
the user:

Starting namenodes on [localhost]
localhost: starting namenode, logging to /usr/local/hadoop/
logs/hadoop-***USER_NAME***-namenode-***MACHINE_NAME***.out
localhost: starting datanode, logging to /usr/local/hadoop/
logs/hadoop-***USER_NAME***-***MACHINE_NAME***.out
Starting secondary namenodes [0.0.0.0]
0.0.0.0: starting secondarynamenode, logging to /usr/local/
hadoop/logs/hadoop-***USER_NAME***-secondarynamenode-***MACHINE_NAME***.out

• (05) start-yarn.sh

We start the YARN Job Scheduler, specifically its daemons ResourceManager and NodeMan-
ager. If the command is successfully executed, then we should get the following:

starting yarn daemons
starting resourcemanager, logging to /usr/local/hadoop/logs/
yarn-***USER_NAME***-resourcemanager-***MACHINE_NAME***.out
localhost: starting nodemanager, logging to /usr/local/hadoop/
logs/yarn-***USER_NAME***-nodemanager-***MACHINE_NAME***.out

• (06) hdfs dfs -mkdir /user/

We create the HDFS folder /user.

• (06) hdfs dfs -mkdir /user/my_HDFS/

We create the HDFS subfolder /user/my HDFS/, where we can place the dataset to be analysed.

3.4.3 Dataset

We use the website Lipsum [26] to generate 4 paragraphs of Lorem Ipsum text. We create a dataset
my_dataset with 4 small text files, each of them containing one of the generated paragraphs.
Figure 3.8 presents the content of my_dataset in the local file system of our server.

Deliverable WP2-D1
23

3.4. Hadoop 3. Configuration and Code Examples

3.4.4 HDFS

Once the cluster is started, we can check the status of the HDFS NameNode at and DataNode at
http://localhost:50070/
Figures 3.6 and 3.7 show it. As we can see, the folder my HDFS is empty.
Figure 3.5 presents the script to run a MapReduce or Spark data analysis application on top of HDFS.
It can be run from a terminal in our local server.

(01) #!/bin/bash
(02) ssh localhost
(03) hdfs dfs -put ./my_dataset/ /user/my_HDFS/my_dataset
(04) # MapReduce or Spark Job Command
(05) hdfs dfs -get /user/my_HDFS/my_result ./
(06) hdfs dfs -rm -r /user/my_HDFS/my_dataset/
(07) hdfs dfs -rm -r /user/my_HDFS/my_result/

Figure 3.5: Script data analysis.sh

Next, we present more detailed instructions about the steps followed in the script:

• (01) #!/bin/bash

We indicate bin bash as the interpreter being used.
• (02) ssh localhost

We connect by ssh to the localhost without a passphrase.
• (03) hdfs dfs -put ./my_dataset/ /user/my_HDFS/my_dataset

We use the HDFS command put to copy my_dataset from the local file system to HDFS.
Figure 3.9 shows it.

• (04) # MapReduce or Spark Job Command

We leave out the details of running a MapReduce/Spark Job to the next section. By the moment
we assume the MapReduce/Spark Job succeeds, producing the results in the new HDFS folder
my_result. Figure 3.10 shows it.

• (05) hdfs dfs -get /user/my_HDFS/my_result ./

We use the HDFS command get to copy my_result from HDFS to our local file system.
Figure 3.11 shows it.

• (06) hdfs dfs -rm -r /user/my_HDFS/my_dataset/

• (07) hdfs dfs -rm -r /user/my_HDFS/my_result/

We use the the HDFS command rm to remove the folders my_dataset and my_result
from HDFS. By doing so, we restore the content of HDFS to the one presented in Figure 3.7,
i.e., ready to run the script again with a new data analysis application.

24
Deliverable WP2-D1

http://localhost:50070/

3. Configuration and Code Examples 3.4. Hadoop

Figure 3.6: Cluster Overview

Deliverable WP2-D1
25

3.4. Hadoop 3. Configuration and Code Examples

Figure 3.7: HDFS

26
Deliverable WP2-D1

3. Configuration and Code Examples 3.4. Hadoop

Figure 3.8: Dataset Folder: my dataset

Deliverable WP2-D1
27

3.4. Hadoop 3. Configuration and Code Examples

Figure 3.9: Command put: my dataset from local file system to HDFS

28
Deliverable WP2-D1

3. Configuration and Code Examples 3.4. Hadoop

Figure 3.10: HDFS With New Folder my result

Deliverable WP2-D1
29

3.4. Hadoop 3. Configuration and Code Examples

Figure 3.11: Command get: my result from HDFS to local file system

30
Deliverable WP2-D1

3. Configuration and Code Examples 3.4. Hadoop

3.4.5 MapReduce

Once the cluster is started, we can check the status of the Yarn ResourceManager and NodeManager
at http://localhost:8088/
Figure 3.12 shows it. As we can see, there is no application being run so far.

Figure 3.12: ResourceManager Overview

Deliverable WP2-D1
31

http://localhost:8088/

3.4. Hadoop 3. Configuration and Code Examples

Figure 3.13: ResourceManager: MapReduce Application in Progress

32
Deliverable WP2-D1

3. Configuration and Code Examples 3.4. Hadoop

Figure 3.14: ResourceManager: MapReduce Application Finished

Deliverable WP2-D1
33

3.4. Hadoop 3. Configuration and Code Examples

Figure 3.15: HDFS: MapReduce Result in my result

34
Deliverable WP2-D1

3. Configuration and Code Examples 3.4. Hadoop

Figure 3.16: HDFS: MapReduce Result Brought Back to Local File System

Deliverable WP2-D1
35

3.4. Hadoop 3. Configuration and Code Examples

We edit the command (04) # MapReduce or Spark Job Command from the script
data_analysis.sh (cf. Figure 3.5) to run our introductory MapReduce application. The MapRe-
duce command is presented below:

(04) hadoop jar /usr/local/hadoop/share/hadoop/tools/lib/
hadoop-streaming-2.7.1.jar \

-input /user/my_HDFS/my_dataset \
-output /user/my_HDFS/my_result \
-mapper ./my_mapper.py \
-reducer ./my_reducer.py \
-file ./my_mapper.py \
-file ./my_reducer.py

On it, we use the library Hadoop Streaming [15] to program a MapReduce application where the Map
and Reduce stages are specified in the Python files my_mapper.py and my_reducer.py, resp.
Both my_mapper.py and my_reducer.py are executable scripts, configured to read from the
standard input and write to the standard output. The MapReduce application itself is quite simple: it
produces as output the new folder my_result, containing the word count for the dataset provided
in the input folder my_dataset.
Figures 3.17, 3.18 and 3.19 present the file my_mapper.py.

(01) # --
(02) # IMPORTS
(03) # --
(04) import sys
(05) import re

Figure 3.17: my mapper.py: Import Section

We present more detailed instructions about the steps followed in the script:
• Lines (01)–(05) import the libraries sys and re. The former is used to redirect the input and

output streams to stdin and stdout, resp. The latter is used to compile regular expressions
for processing the content being read.

• Lines (06)–(27) define the function my_map. It receives as parameters an input and an output
stream. The function reads the whole content provided by the input stream, producing as re-
sult a number of text lines to be written to the output stream. In concrete, for each different
word being read by the standard input, the function produces a key-value line with the format
word\t(num_appearances)\n, where num_appearances is the amount of times the
word word has been read.
The function uses a dictionary my_dict to collect as keys all words being read, with each word
having as its associated key the number of appearances. my_dict is initialised in line (11) and
it is populated in the for loop of lines (13)–(23). Line (14) ensures we read one line from the
standard input at a time. Line (16) splits the text line to the list of words it contains. The loop
of lines (18)–(23) processes each word separately. On line (19) we use re.sub and lower to
remove any non-alphabetic character and to lower any upper case letter appearing in the word,

36
Deliverable WP2-D1

3. Configuration and Code Examples 3.4. Hadoop

(06) # --
(07) # FUNCTION my_map
(08) # --
(09) def my_map(my_input_stream,

my_output_stream
):

(10) # 1. We create a dictionary with all
the different words in the file

(11) my_dict = {}
(12) num_appearances = 1

(13) # 2. We traverse the file content, to populate my_dict
(14) for line in my_input_stream:
(15) # 2.1. We process the line
(16) word_list = line.split(" ")

(17) # 2.2. We populate the dictionary
with the words of the sentence

(18) for w in word_list:
(19) my_word = re.sub(r"[ˆa-zA-Z]", "", w).lower()

(20) if (my_word in my_dict):
(21) my_dict[my_word] =

my_dict[my_word] + num_appearances
(22) else:
(23) my_dict[my_word] = num_appearances

(24) # 3. We write the content of the dict
(25) for key in my_dict:
(26) my_str = key + "\t(" + str(my_dict[key]) + ")\n"
(27) my_output_stream.write(my_str)

Figure 3.18: my mapper.py: my map Function

resp. Finally, lines (20)–(23) check if the word has already been registered previously. If so, it
increments its number of appearances by one. Otherwise, it enters the word in the dictionary
with a single appearance.

Once the entire content of the standard input has been read and processed, lines (24)–(27)
produce the lines to be written by the output stream. Line (25) traverses the words stored in
the dictionary. Line (26) produces the String with the key-value pair associated to the word.
Finally, line (27) writes this String to the standard output.

• Lines (31)–(38) define the main entry point for the program. Lines (35)–(36) redirect the input
and output streams to stdin and stdout, resp. Line (38) calls to the aforementioned function
my_map.

Deliverable WP2-D1
37

3.4. Hadoop 3. Configuration and Code Examples

(28) # ---
(29) # MAIN
(30) # --
(31) if __name__ == ’__main__’:
(32) # 1. We use as many input arguments as needed
(33) pass

(34) # 2. We set the input and output streams
(35) my_input_stream = sys.stdin
(36) my_output_stream = sys.stdout

(37) # 3. We launch the Map program
(38) my_map(my_input_stream,

my_output_stream
)

Figure 3.19: my mapper.py: Main Entry Point

A copy of the file my_mapper.py is to be placed on each DataNode of the cluster involved
in the Map stage, so as to process the subset of my_dataset associated to it.

Figures 3.20, 3.21 and 3.22 present the file my_reducer.py.

(01) # --
(02) # IMPORTS
(03) # --
(04) import sys

Figure 3.20: my mapper.py: Import Section

The program is very similar to my_mapper.py, so we only higlight the differences:
• Lines (01)–(04) do no longer need to import the library re.
• Lines (05)–(26) define the function my_reduce. The function has the same responsability

as my_map. However, instead of reading from my_dataset, the function reads the sorted
key-value pairs word\t(num_appearances)\n produced by the stage my_map. Lines
(14)–(17) parse each entry to get its associated word and number of appearances.

• Lines (31)–(38) define the main entry point for the program, calling to the aforementioned
function my_reduce.
A copy of the file my_reducer.py is to be placed on each node of the cluster involved in the
Reduce stage, so as to process the subset of the sorted key-value entries associated to it.

Figure 3.13 presents the status of the ResourceManager once the command (04) of the script
data_analysis.sh is launched. As we can see, the MapReduce application is considered to

38
Deliverable WP2-D1

3. Configuration and Code Examples 3.4. Hadoop

(05) # --
(06) # FUNCTION my_reduce
(07) # --
(08) def my_reduce(my_input_stream,

my_output_stream
):

(09) # 1. We create a dictionary with all
the different words in the file

(10) my_dict = {}

(11) # 2. We traverse the file content, to populate my_dict
(12) for line in my_input_stream:
(13) # 2.1. We get the info from the line
(14) line = line.replace("\n", "")
(15) info = line.split("\t")

(16) my_word = info[0]
(17) num_appearances = int(info[1][1:-1])

(18) # 2.2. We populate the dictionary
with the words of the sentence

(19) if (my_word in my_dict):
(20) my_dict[my_word] =

my_dict[my_word] + num_appearances
(21) else:
(22) my_dict[my_word] = num_appearances

(23) # 3. We write the content of the dict
(24) for key in my_dict:
(25) my_str = key + "\t(" + str(my_dict[key]) + ")\n"
(26) my_output_stream.write(my_str)

Figure 3.21: my mapper.py: my map Function

be in progress. Figure 3.14 presents the status once the application finishes. As the execution is suc-
cessful, the new folder my_result is available now in HDFS, with Figure 3.15 showing it. While
the content of the files is not directly accessible in HDFS, we can execute the command get to
bring the folder back to our local file system, so as to explore it (Figure 3.16 shows it). All in all,
the MapReduce application finds 135 different words with their associated number of appearances in
my_dataset.

Deliverable WP2-D1
39

3.4. Hadoop 3. Configuration and Code Examples

(27) # ---
(28) # MAIN
(29) # --
(30) if __name__ == ’__main__’:
(31) # 1. We use as many input arguments as needed
(32) pass

(33) # 2. We set the input and output streams
(34) my_input_stream = sys.stdin
(35) my_output_stream = sys.stdout

(36) # 3. We launch the Map program
(37) my_map(my_input_stream,

my_output_stream
)

Figure 3.22: my mapper.py: Main Entry Point

3.4.6 Stop a Hadoop Cluster

Once we have run our data analysis application, we stop the Hadoop Single Node Cluster with Pseudo-
Distributed Operation.

Figure 3.23 presents the script to stop the cluster. It can be run from a terminal in our local server.

(01) #!/bin/bash
(02) ssh localhost
(03) hdfs dfs -rm -r /user
(04) stop-yarn.sh
(05) stop-dfs.sh

Figure 3.23: Script Stop Hadoop Cluster.sh

Next, we present more detailed instructions about the steps followed in the script:

• (01) #!/bin/bash

We indicate bin bash as the interpreter being used.

• (02) ssh localhost

We connect by ssh to the localhost without a passphrase.

• (03) hdfs dfs -rm -r /user

We delete our HDFS folder.

• (04) stop-yarn.sh

40
Deliverable WP2-D1

3. Configuration and Code Examples 3.5. Spark

We stop the YARN Job Scheduler, specifically its daemons ResourceManager and NodeMan-
ager. If the command is successfully executed, then we should get the following:
stopping yarn daemons
stopping resourcemanager
localhost: stopping nodemanager
localhost: nodemanager did not stop gracefully after 5 seconds: killing with kill -9
no proxyserver to stop

• (05) stop-dfs.sh

We stop the HDFS daemons NameNode and DataNode. If the command is successfully exe-
cuted, then we should get the following:
Stopping namenodes on [localhost]
localhost: stopping namenode
localhost: stopping datanode
Stopping secondary namenodes [0.0.0.0]
0.0.0.0: stopping secondarynamenode

3.5 Spark

In this section we discuss how to install and configure Spark. We also present a Spark Core and a
Spark SQL application running on top of the Hadoop cluster described in Section 3.4.

3.5.1 Installing Spark

We install and configure Spark 2.4.5 [27]. While there is a more recent version available (Spark 3.0.0
[28]), this version is still in preview mode and thus it is not stable.
Figure 3.24 presents the script to install and configure Spark 2.4.5. It can be run from a terminal in
our local server.

(01) #!/bin/bash
(02) wget https://downloads.apache.org/spark/spark-2.4.5/

spark-2.4.5-bin-hadoop2.7.tgz
(03) tar -xzvf spark-2.4.5-bin-hadoop2.7.tgz
(04) sudo mv spark-2.4.5-bin-hadoop2.7 /usr/local/spark
(05) python3.7 -m pip install pyspark
(06) sudo gedit ˜/.bashrc
(07) spark-submit --version

Figure 3.24: Script Spark 2 4 5.sh

Next, we present more detailed instructions about the steps followed in the script:

• (01) #!/bin/bash

We indicate bin bash as the interpreter being used.

Deliverable WP2-D1
41

3.5. Spark 3. Configuration and Code Examples

• (02) wget https://downloads.apache.org/spark/spark-2.4.5/
spark-2.4.5-bin-hadoop2.7.tgz

We download Spark 2.4.5 as a Gzipped source tarball. Among the different versions, we choose
the one that is pre-built for Hadoop 2.7.

• (03) tar -xzvf spark-2.4.5-bin-hadoop2.7.tgz

We extract it.
• (04) sudo mv spark-2.4.5-bin-hadoop2.7 /usr/local/spark

We move the extracted folder to /usr/local/spark.
• (05) python3.7 -m pip install pyspark

We use pip, the package installer for Python, to download pyspark 2.4.5 [29]. This
package is useful as it allows us to develop, debug and run a Spark application locally, us-
ing the Python 3.7.7 interpreter and the Python IDE PyCharm [30]. Once the application has
been tested, it can be submitted for running in the Hadoop Single Node Cluster with Pseudo-
Distributed Operation described in Section 3.4.

• (06) sudo gedit ˜/.bashrc

We use super user privileges with the text editor gedit so as to modify the content of the
configuration file bashrc. In our case we add:
export PATH=$PATH:/usr/local/spark/bin/
export PYSPARK_PYTHON=python3.7

• (07) spark-submit --version

We launch Spark 2.4.5 to ensure it has been installed. In this case we should get the following:
Welcome to

____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ ‘/ __/ ’_/
/___/ .__/_,_/_/ /_/_\ version 2.4.5

/_/

Using Scala version 2.11.12, OpenJDK 64-Bit Server VM, 1.8.0_252
Branch HEAD
Compiled by user centos on 2020-02-02T19:38:06Z
Revision cee4ecbb16917fa85f02c635925e2687400aa56b
Url https://gitbox.apache.org/repos/asf/spark.git
Type --help for more information.

3.5.2 Spark Core

In Section 3.4 we started the cluster and run a MapReduce application on it. Figure 3.14 showed
the status of the Yarn ResourceManager and NodeManager (available at http://localhost:
8088/) including such MapReduce application.
We edit now the command (04) # MapReduce or Spark Job Command from the script
data_analysis.sh (cf. Figure 3.5) to run our introductory Spark Core application. The Spark
Core command is presented below:

(04) spark-submit \

42
Deliverable WP2-D1

http://localhost:8088/
http://localhost:8088/

3. Configuration and Code Examples 3.5. Spark

--master yarn --deploy-mode cluster \
./my_Spark_Core_example.py \
/user/my_HDFS/my_dataset \
/user/my_HDFS/my_result

On it, we use spark-submit to launch the Spark Core application in the Hadoop Single Node Clus-
ter with Pseudo-Distributed Operation. The line --master yarn --deploy-mode cluster
specifies Yarn to be the ResourceManager handling the application. The line
./my_Spark_Core_example.py specifies the Python file containing the Spark Core applica-
tion. Finally, the lines /user/my_HDFS/my_dataset and /user/my_HDFS/my_result
are the first and second parameter of the Python program, resp.

The functionality of the Spark Core application is equivalent to the one of the MapReduce application
presented in Section 3.4: it produces as output the new folder my_result, containing the word
count for the dataset provided in the input folder my_dataset.

Figures 3.25, 3.26 and 3.27 present the file my_Spark_Core_example.py.

(01) # --
(02) # IMPORTS
(03) # --
(04) import pyspark
(05) import sys
(06) import re

Figure 3.25: my Spark Core example.py: Import Section

We present more detailed instructions about the steps followed in the script:

• Lines (01)–(06) import the libraries pyspark, sys and re. The library pyspark allows us
to use the Spark Core API. The library sys is used to pass the input and output directories to
the program. The library re is used to compile regular expressions for processing the content
being read.

• Lines (07)–(20) define the function my_spark_core_job. It receives as parameters the
SparkContext (sc) and the aforementioned input and output directories (my_dataset_dir
and my_result_dir, resp). The function processes the dataset in my_dataset_dir to
produce the new folder my_result_dir with its word count.

Line (12) applies the creator operation textFile (with the folder my_dataset_dir as
parameter) to load the dataset into inputRDD, an RDD of String items. In particular, each line
of text of the dataset file turns into one item of such RDD. Figure 3.8 showed the content of
file_1.txt of my_dataset. Figure 3.28 presents how the first 2 lines of the file translate
into 2 items of inputRDD.

Line (14) applies the transformation operation flatMap (with the lambda function
lambda line: line.split(" ") as parameter) on inputRDD to produce the new
RDD all_wordsRDD of String items. In particular, each item (text line) of inputRDD
is to be split into a list with the words it contains, and then this word list is exploded, producing

Deliverable WP2-D1
43

3.5. Spark 3. Configuration and Code Examples

(07) # --
(08) # FUNCTION my_spark_core_job
(09) # --
(10) def my_spark_core_job(sc, my_dataset_dir, my_result_dir):
(11) # 1. Operation C1: textFile
(12) inputRDD = sc.textFile(my_dataset_dir)

(13) # 2. Operation T1: flatMap
(14) all_wordsRDD =

inputRDD.flatMap(lambda line: line.split(" "))

(15) # 3. Operation T2: map
(16) clean_wordsRDD =

all_wordsRDD.map(lambda w:
(re.sub(r"[ˆa-zA-Z]", "", w).lower(),
1
)

)

(17) # 4. Operation T3: reduceByKey
(18) solutionRDD =

clean_wordsRDD.reduceByKey(lambda x, y: x + y)

(19) # 5. Operation A1: saveAsTextFile
(20) solutionRDD.saveAsTextFile(my_result_dir)

Figure 3.26: my Spark Core example.py: my spark core job Function

one item per word. Figure 3.29 presents the items produced in all_wordsRDD for the first
item of inputRDD showed in Figure 3.28.

Line (16) applies the transformation operation map (with the lambda function
lambda w: (re.sub(r"[ˆa-zA-Z]", "", w).lower(), 1) as parameter)
on all_wordsRDD to produce the new RDD clean_wordsRDD of tuple (String, int)
items. In particular, each item (word) of all_wordsRDD is to see removed any non-
alphanumeric character; besides that, any upper-case letter is turned into its equivalent
lower-case letter. The function returns the tuple (word, 1), registering one appearance of the
word. Figure 3.30 presents the items produced in clean_wordsRDD for the subset of items
of all_wordsRDD showed in Figure 3.29.

Line (18) applies the transformation operation reduceByKey (with the lambda function
lambda x, y: x + y as parameter) on clean_wordsRDD to produce the new RDD
solutionRDD of tuple (String, int) items. In particular, all items containing the same key
(word) are aggregated (adding the number of appearances). Figure 3.31 presents the content of
solutionRDD for the words showed in Figure 3.30.

Line (20) applies the action operation saveAsTextFile (with the folder my_result_dir

44
Deliverable WP2-D1

3. Configuration and Code Examples 3.5. Spark

(21) # --
(22) # MAIN
(23) # --
(24) # 1. We use as many input arguments as needed
(25) my_dataset_dir = "/FileStore/tables/my_dataset/"
(26) my_result_dir = "/FileStore/tables/my_result/"

(27) if (len(sys.argv) > 1):
(28) my_dataset_dir = sys.argv[1]
(29) my_result_dir = sys.argv[2]

(30) # 2. We configure the Spark Context
(31) sc = pyspark.SparkContext.getOrCreate()
(32) sc.setLogLevel(’WARN’)
(33) print("\n\n\n")

(34) # 3. We call to our main function
(35) my_spark_core_job(sc, my_dataset_dir, my_result_dir)

Figure 3.27: my Spark Core example.py: Main Entry Point

as parameter) to store the content of solutionRDD into it. The result folder
my_result_dir contains as many files as partitions are in solutionRDD. In particular,
each item of the RDD is stored as a text line. Figures 3.34 and 3.35 present the files and content
produced by solutionRDD when the program is executed in the Hadoop cluster.

• Lines (21)–(35) define the main entry point for the program. Lines (25)–(26) specify the in-
put and output directories. When testing the program locally, we run the program in PyCharm
and assign the dataset folder my_dataset of the local file system. When running the pro-
gram in the Hadoop cluster we use lines (27)–(29) to set the input and output directories to the
HDFS folders /user/my_HDFS/my_dataset and /user/my_HDFS/my_result (as
described in the command (04) spark submit of the script data_analysis.sh for
launching the program). Lines (31)–(33) create the SparkContext, configuring how verbose it
should be on reporting the status when running the application. Finally, line (35) calls to the
aforementioned function my_spark_core_job.

A copy of the file my_Spark_Core_example.py is to be placed on the DataNode the cluster
running the Spark Driver process.
Figure 3.32 presents the status of the ResourceManager once the command (04) of the script
data_analysis.sh is launched. As we can see, the Spark Core application is considered to
be in progress. Figure 3.33 presents the status once the application finishes. As the execution is suc-
cessful, the new folder my_result is available now in HDFS, with Figure 3.34 showing it. While
the content of the files is not directly accessible in HDFS, we can execute the command get to
bring the folder back to our local file system, so as to explore it (Figure 3.35 shows it). All in all,
the Spark Core application finds 135 different words with their associated number of appearances in
my_dataset.

Deliverable WP2-D1
45

3.5. Spark 3. Configuration and Code Examples

Lorem ipsum dolor sit amet, elit. Cras et nibh. Pellentesque\n
habitant morbi tristique senectus et netus et malesuada fames ac
turpis egestas. Quisque tempus a\n
...

Figure 3.28: inputRDD Content

Lorem
ipsum
dolor
sit
amet,
elit.
Cras
et
nibh.
Pellentesque\n
...

Figure 3.29: all wordsRDD Content

(’lorem, 1)
(’ipsum, 1)
(’dolor, 1)
(’sit, 1)
(’amet, 1)
(’elit, 1)
(’cras, 1)
(’et, 1)
(’nibh, 1)
(’pellentesque, 1)
...

Figure 3.30: clean wordsRDD Content

(’lorem’, 4)
(’ipsum’, 2)
(’dolor’, 4)
(’sit’, 6)
(’amet’, 6)
(’elit’, 2)
(’cras’, 3)
(’et’, 4)
(’nibh’, 5)
(’pellentesque’, 7)
...

Figure 3.31: RDDs Content

46
Deliverable WP2-D1

3. Configuration and Code Examples 3.5. Spark

Figure 3.32: ResourceManager: Spark Core Application in Progress

Deliverable WP2-D1
47

3.5. Spark 3. Configuration and Code Examples

Figure 3.33: ResourceManager: Spark Core Application Finished

48
Deliverable WP2-D1

3. Configuration and Code Examples 3.5. Spark

Figure 3.34: HDFS: Spark Core Result in my result

Deliverable WP2-D1
49

3.5. Spark 3. Configuration and Code Examples

Figure 3.35: HDFS: Spark Core Result Brought Back to Local File System

50
Deliverable WP2-D1

3. Configuration and Code Examples 3.5. Spark

3.5.3 Spark SQL

We edit now the command (04) # MapReduce or Spark Job Command from the script
data_analysis.sh (cf. Figure 3.5) to run our introductory Spark SQL application. The Spark
SQL command is presented below:

(04) spark-submit \
--master yarn --deploy-mode cluster \
./my_Spark_SQL_example.py \
/user/my_HDFS/my_dataset \
/user/my_HDFS/my_result

As we can see, the command is the same as for the Spark Core application, it only changes the name
of the Python program. And so it is the functionality of the Spark SQL application equivalent to
the ones of the MapReduce and the Spark Core applications: it produces as output the new folder
my_result, containing the word count for the dataset provided in the input folder my_dataset.
Figures 3.36, 3.37, 3.38 and 3.39 present the file my_Spark_SQL_example.py.

(01) # --
(02) # IMPORTS
(03) # --
(04) import pyspark
(05) import pyspark.sql.functions
(06) import pyspark.sql.types
(07) import sys

Figure 3.36: my Spark SQL example.py: Import Section

The program is very similar to my_spark_core_example.py, so we only higlight the differ-
ences:

• Lines (01)–(07) import the additional libraries pyspark.sql.functions and
pyspark.sql.types to use the Spark SQL API.

• Lines (08)–(36) define the function my_spark_sql_job. It receives as parameters
the SparkSession (spark) and the input and output directories (my_dataset_dir and
my_result_dir, resp). The function processes the dataset in my_dataset_dir to pro-
duce the new folder my_result_dir with its word count.
Line (12) defines the schema my_schema for the dataset, matching each line of text of the
dataset to a Row object with a single column line, of type String.
Line (14) applies the creator operation read (with the folder my_dataset_dir and
my_schema as parameters) to load the dataset into inputDF, a DataFrame of Row objects
with one column line of type String. Figure 3.8 showed the content of file_1.txt of
my_dataset. Figure 3.40 presents how the first 2 lines of the file translate into 2 Row items
of inputDF.
Lines (16)–(18) apply the transformation operations withColumn and drop on inputDF
to produce the new DF sentenceDF of Row objects with one column words_list of type

Deliverable WP2-D1
51

3.5. Spark 3. Configuration and Code Examples

list of String. In particular, in line (17) the operation withColumn creates the new column
words_list by splitting the String of line into its words. Then, in line (18) the operation
drop removes the column line, for it to not appear in the generated sentenceDF. Figure
3.41 presents the Row produced in sentenceDF for the first item of inputDF showed in
Figure 3.40.
Lines (20)–(30) repeat the application of withColumn and drop over 3 consecutive
DataFrames, to shape the content of its unique column to the desired format by: exploding
the list of words into a single Row per word (line 21), removing any non-alphanumerical char-
acter (line 25) and turning any upper-case character into its equivalent lower-case one (line 29).
Likewise, lines (22), (26) and (30) remove any intermediate column being produced. Figures
3.42, 3.43 and 3.44 show the content of these 3 DataFrames, which end up producing the new
DataFrame lowerDF.
Lines (32)–(33) apply the transformation operation groupBy on lowerDF to produce
the new DF solutionDF of Row objects with two column: word (of type String) and
count(word) (of type Integer). In particular, in line (33) the operation groupBy speci-
fies the aggregation of Column word, counting the appearances for each group. Figure 3.45
shows the content of solutionDF for the Rows showed in Figure 3.44.
Lines (35)–(36) apply the action operation write (with the folder my_result_dir as pa-
rameter) to store the content of solutionDF into it. Figures 3.48 and 3.49 present the files
and content produced by solutionDF when the program is executed in the Hadoop cluster.

• Lines (37)–(51) define the main entry point for the program. In particular, line (47) creates the
SparkSession. Finally, line (51) calls to the aforementioned function my_spark_sql_job.

A copy of the file my_Spark_SQL_example.py is to be placed on the DataNode the cluster
running the Spark Driver process.
Figure 3.46 presents the status of the ResourceManager once the command (04) of the script
data_analysis.sh is launched. As we can see, the Spark SQL application is considered to be in
progress. Figure 3.47 presents the status once the application finishes. As the execution is success-
ful, the new folder my_result is available now in HDFS, with Figure 3.48 showing it. While the
content of the files is not directly accessible in HDFS, we can execute the command get to bring the
folder back to our local file system, so as to explore it (Figure 3.49 shows it). All in all, the Spark SQL
application finds 135 different words with their associated number of appearances in my_dataset.

52
Deliverable WP2-D1

3. Configuration and Code Examples 3.5. Spark

(08) # --
(09) # FUNCTION my_spark_sql_job
(10) # --
(11) def my_spark_sql_job(spark, my_dataset_dir, my_result_dir):
(11) # 1. We define the Schema of our DF.
(12) my_schema = pyspark.sql.types.StructType(

[pyspark.sql.types.StructField("line",
pyspark.sql.types.StringType(), True)
]

)

(13) # 2. Operation C1: Load DataFrame
(14) inputDF = spark.read.format("csv") \

.option("delimiter", ";") \

.option("quote", "") \

.option("header", "false") \

.schema(my_schema) \

.load(my_dataset_dir)

(15) # 3. Operation T1: split
(16) sentenceDF = inputDF \
(17) .withColumn("words_list",

pyspark.sql.functions.split(
pyspark.sql.functions.col("line"),
" "

)
) \

(18) .drop("line")

(19) # 4. Operation T2: explode
(20) wordsDF = sentenceDF \
(21) .withColumn("draft_word",

pyspark.sql.functions.explode(
pyspark.sql.functions.col("words_list")

)
) \

(22) .drop("words_list")

Figure 3.37: my Spark SQL example.py: my spark sql job Function

Deliverable WP2-D1
53

3.5. Spark 3. Configuration and Code Examples

(23) # 5. Operation T3: regexp_replace
(24) cleanDF = wordsDF \
(25) .withColumn("clean_word",

pyspark.sql.functions.regexp_replace(
"draft_word",

r"[ˆa-zA-Z]",
""

)
) \

(26) .drop("draft_word")

(27) # 6. Operation T4: lower
(28) lowerDF = cleanDF \
(29) .withColumn("word",

pyspark.sql.functions.lower(
pyspark.sql.functions.col("clean_word")

)
) \

(30) .drop("clean_word")

(31) # 7. Operation T5: GroupBy
(32) solutionDF = lowerDF \
(33) .groupBy(["word"]).agg({"word": "count"})

(34) # 8. Operation A1: We save the results
(35) solutionDF.write.format("csv") \
(36) .save(my_result_dir)

Figure 3.38: my Spark SQL example.py: my spark sql job Function

54
Deliverable WP2-D1

3. Configuration and Code Examples 3.5. Spark

(37) # --
(38) # MAIN
(39) # --
(40) # 1. We use as many input arguments as needed
(41) my_dataset_dir = "/FileStore/tables/my_dataset/"
(42) my_result_dir = "/FileStore/tables/my_result/"

(43) if (len(sys.argv) > 1):
(44) my_dataset_dir = sys.argv[1]
(45) my_result_dir = sys.argv[2]

(46) # 2. We configure the Spark Session
(47) spark = pyspark.sql.SparkSession.builder.getOrCreate()
(48) spark.sparkContext.setLogLevel(’WARN’)
(49) print("\n\n\n")

(50) # 3. We call to our main function
(51) my_spark_sql_job(spark, my_dataset_dir, my_result_dir)

Figure 3.39: my Spark SQL example.py: Main Entry Point

Deliverable WP2-D1
55

3.5. Spark 3. Configuration and Code Examples

+--------------------+
| line|
+--------------------+
|Lorem ipsum dolor...|
|habitant morbi tr...|
|... |
+--------------------+

Figure 3.40: inputDF Content

+--------------------+
| words_list|
+--------------------+
|[Lorem, ipsum., d...|
|... |
+--------------------+

Figure 3.41: sentenceDF Content

+--------------------+
| draft_word|
+--------------------+
|Lorem |
|ipsum. |
|dolor |
|... |
+--------------------+

Figure 3.42: wordsDF Content

56
Deliverable WP2-D1

3. Configuration and Code Examples 3.5. Spark

+--------------------+
| clean_word|
+--------------------+
|Lorem |
|ipsum |
|dolor |
|... |
+--------------------+

Figure 3.43: cleanDF Content

+--------------------+
| word|
+--------------------+
|lorem |
|ipsum |
|dolor |
|... |
+--------------------+

Figure 3.44: lowerDF Content

+--------------------+-----------+
| word|count(word)|
+--------------------+-----------+
lorem	4
ipsum	2
dolor	4
...	...
+--------------------+-----------+

Figure 3.45: solutionDF Content

Deliverable WP2-D1
57

3.5. Spark 3. Configuration and Code Examples

Figure 3.46: ResourceManager: Spark SQL Application in Progress

58
Deliverable WP2-D1

3. Configuration and Code Examples 3.5. Spark

Figure 3.47: ResourceManager: Spark SQL Application Finished

Deliverable WP2-D1
59

3.5. Spark 3. Configuration and Code Examples

Figure 3.48: HDFS: Spark SQL Result in my result

60
Deliverable WP2-D1

3. Configuration and Code Examples 3.5. Spark

Figure 3.49: HDFS: Spark SQL Result Brought Back to Local File System

Deliverable WP2-D1
61

4 Conclusions and Future Work

In this deliverable we have introduced the Big Data ecosystem of tools we are going to use for storing
and analysis bus and wind power-related large-datasets.
This ecosystem includes HDFS as a distributed file system (designed to efficiently allocate data across
the multiple nodes of the cluster), Yarn as a resource manager (responsible for schedule and moni-
tor the execution of our data analysis applications) and MapReduce, Spark Core and Spark SQL as
frameworks for easily writing applications processing large-scale datasets across a cluster in a reli-
able, fault-tolerant manner. While Python is selected as the programming language of choice (with
MapReduce, Spark Core and Spark SQL providing an API for it), the data analytics applications run
on top of the Java Runtime Environment.
We have presented detailed scripts for installing, configuring and applying Java OpenJDK 8, Python
3.7.7, Hadoop 2.7.1 and Spark 2.4.5. In the case of Hadoop, the scripts include how to start and stop
a Single Node Cluster with Pseudo-Distributed Operation. In the case of MapReduce, Spark Core
and Spark SQL, a detailed explanation of an introductory example has been presented, together with
a detailed explanation of its execution in the aforementioned cluster.

62

Bibliography

[1] V. Mayer-Schonberger and K. Cukier, Big Data. Hmhbooks, 2013.
[2] Apache Hadoop, https://hadoop.apache.org/.
[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file system,” in 26th

Symposium on Mass Storage Systems and Technologies (MSST’10), 1–10. IEEE Computer
Society, 2010.

[4] Hadoop Distributed File System 3.2.1, https://hadoop.apache.org/docs/r3.2.1/
hadoop-project-dist/hadoop-hdfs/HdfsDesign.html.

[5] V. Vavilapalli, A. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe,
H. Shah, S. Seth, B. Saha, C. A. Curino, O. O’Malley, S. R. Radia, B. C. Reed, and E. Balde-
schwieler, “Apache hadoop yarn: yet another resource negotiator,” in 4th Symposium on Cloud
Computing (SOCC’13), 1–16. ACM, 2013.

[6] Apache Hadoop Yarn, https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/
YARN.html/.

[7] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,” in 6th
Symposium on Operating System Design and Implementation (OSDI’04), 137–150, 2004.

[8] Hadoop MapReduce 3.2.1, https://hadoop.apache.org/docs/r3.2.1/hadoop-mapreduce-client/
hadoop-mapreduce-client-core/MapReduceTutorial.html.

[9] Apache Spark, https://spark.apache.org/.
[10] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin, S. Shenker,

and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing,” in 9th Symposium on Networked Systems Design and Implementation (NSDI’12),
15–28. USENIX, 2012.

[11] Apache Spark Core, https://spark.apache.org/docs/2.4.5/rdd-programming-guide.html.
[12] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan, M. J.

Franklin, A. Ghodsi, and M. Zaharia, “Spark sql: Relational data processing in spark,” in 15th
International Conference on Management of Data (SIGMOD’15), 1383–1394. ACM Press,
2015.

[13] Apache Spark SQL, https://spark.apache.org/docs/2.4.5/sql-programming-guide.html.
[14] Java OpenJDK, https://openjdk.java.net/.
[15] Hadoop Streaming 2.7.1, https://hadoop.apache.org/docs/r2.7.1/hadoop-streaming/

HadoopStreaming.html.
[16] The Scala Programming Language, https://www.scala-lang.org/.
[17] Ubuntu 20.04 LTS, https://ubuntu.com/.
[18] Java OpenJDK 8, https://openjdk.java.net/projects/jdk8u/.
[19] Java OpenJDK 11, https://openjdk.java.net/projects/jdk/11/.
[20] Python 3.7.7, https://www.python.org/downloads/release/python-377/.
[21] Python 3.8.2, https://www.python.org/downloads/release/python-382/.

63

https://hadoop.apache.org/
https://hadoop.apache.org/docs/r3.2.1/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/r3.2.1/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html/
https://hadoop.apache.org/docs/r3.2.1/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r3.2.1/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://spark.apache.org/
https://spark.apache.org/docs/2.4.5/rdd-programming-guide.html
https://spark.apache.org/docs/2.4.5/sql-programming-guide.html
https://openjdk.java.net/
https://hadoop.apache.org/docs/r2.7.1/hadoop-streaming/HadoopStreaming.html
https://hadoop.apache.org/docs/r2.7.1/hadoop-streaming/HadoopStreaming.html
https://www.scala-lang.org/
https://ubuntu.com/
https://openjdk.java.net/projects/jdk8u/
https://openjdk.java.net/projects/jdk/11/
https://www.python.org/downloads/release/python-377/
https://www.python.org/downloads/release/python-382/

Bibliography Bibliography

[22] pip 20.1, https://pypi.org/project/pip/.
[23] Hadoop 2.7.1, https://hadoop.apache.org/docs/r2.7.1/.
[24] Hadoop 3.2.1, https://hadoop.apache.org/docs/r3.2.1/.
[25] OpenSSH, https://www.openssh.com/.
[26] Lorem Ipsum Generator, https://www.lipsum.com/.
[27] Apache Spark 2.4.5, https://spark.apache.org/docs/2.4.5/.
[28] Apache Spark 3.0.0, https://spark.apache.org/docs/3.0.0-preview/.
[29] pyspark 2.4.5, https://pypi.org/project/pyspark/.
[30] PyCharm 2020.1, https://www.jetbrains.com/pycharm/.

64
Deliverable WP2-D1

https://pypi.org/project/pip/
https://hadoop.apache.org/docs/r2.7.1/
https://hadoop.apache.org/docs/r3.2.1/
https://www.openssh.com/
https://www.lipsum.com/
https://spark.apache.org/docs/2.4.5/
https://spark.apache.org/docs/3.0.0-preview/
https://pypi.org/project/pyspark/
https://www.jetbrains.com/pycharm/

SMART electric Buses

August 19, 2020

	1 Introduction
	2 Big Data Ecosystem
	2.1 Hadoop
	2.1.1 Hadoop Distributed File System
	2.1.2 Hadoop Yarn
	2.1.3 Hadoop MapReduce

	2.2 Spark
	2.2.1 Data Storage and Resource Manager
	2.2.2 Spark Core
	2.2.3 Spark SQL

	3 Configuration and Code Examples
	3.1 Local Cluster
	3.2 Java
	3.3 Python
	3.4 Hadoop
	3.4.1 Installing Hadoop
	3.4.2 Start a Hadoop Cluster
	3.4.3 Dataset
	3.4.4 HDFS
	3.4.5 MapReduce
	3.4.6 Stop a Hadoop Cluster

	3.5 Spark
	3.5.1 Installing Spark
	3.5.2 Spark Core
	3.5.3 Spark SQL

	4 Conclusions and Future Work

